<项目代码>YOLOv8 瞳孔识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的博客

<数据集>瞳孔识别数据集<目标检测>https://blog.csdn.net/qq_53332949/article/details/140797749

数据集下载链接:

点击下载https://download.csdn.net/download/qq_53332949/89720124?spm=1001.2101.3001.9500

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 F1_curve

3.5 confusion_matrix

3.6 confusion_matrix_normalized

3.7 验证 batch

标签:

预测结果:

3.8 识别效果图

相关推荐
B站计算机毕业设计超人2 分钟前
计算机毕业设计Python+大模型中医养生问答系统 知识图谱 医疗大数据 中医可视化 机器学习 深度学习 人工智能 大数据毕业设计
大数据·人工智能·爬虫·python·深度学习·机器学习·知识图谱
学不会lostfound5 分钟前
三、计算机视觉_02计算机视觉领域的四大基本任务
人工智能·目标检测·图像分割·图像分类·计算机视觉四大基本任务·目标定位
青石横刀策马6 分钟前
Python学习笔记(1)装饰器、异常检测、标准库概览、面向对象
笔记·python·学习
CQU_JIAKE19 分钟前
11-9:【大数据】DEBUG
开发语言·python
华院计算44 分钟前
活动|华院计算作为联盟理事单位出席进博会全球人工智能合作论坛
人工智能
GIS 数据栈1 小时前
博客摘录「 pyqt 为新建子线程传参以及子线程返回数据到主线程」2023年12月7日
笔记·python·pyqt·多线程·多线程通信
卧式纯绿1 小时前
自动驾驶3D目标检测综述(二)
人工智能·目标检测·自动驾驶
TMT星球1 小时前
引领豪华MPV新趋势,比亚迪夏内饰科技广州车展全球首发
人工智能·科技
小二·1 小时前
革命性AI搜索引擎!ChatGPT最新功能发布,无广告更智能!
人工智能·搜索引擎·chatgpt
液态不合群2 小时前
Vscode 远程切换Python虚拟环境
ide·vscode·python