atttention1111

复制代码
import math
import pdb

import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F


def import_class(name):
    components = name.split('.')
    mod = __import__(components[0])
    for comp in components[1:]:
        mod = getattr(mod, comp)
    return mod


def conv_branch_init(conv, branches):
    weight = conv.weight
    n = weight.size(0)
    k1 = weight.size(1)
    k2 = weight.size(2)
    nn.init.normal_(weight, 0, math.sqrt(2. / (n * k1 * k2 * branches)))
    nn.init.constant_(conv.bias, 0)


def conv_init(conv):
    if conv.weight is not None:
        nn.init.kaiming_normal_(conv.weight, mode='fan_out')
    if conv.bias is not None:
        nn.init.constant_(conv.bias, 0)


def bn_init(bn, scale):
    nn.init.constant_(bn.weight, scale)
    nn.init.constant_(bn.bias, 0)


def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        if hasattr(m, 'weight'):
            nn.init.kaiming_normal_(m.weight, mode='fan_out')
        if hasattr(m, 'bias') and m.bias is not None and isinstance(m.bias, torch.Tensor):
            nn.init.constant_(m.bias, 0)
    elif classname.find('BatchNorm') != -1:
        if hasattr(m, 'weight') and m.weight is not None:
            m.weight.data.normal_(1.0, 0.02)
        if hasattr(m, 'bias') and m.bias is not None:
            m.bias.data.fill_(0)


class TemporalConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, dilation=1):
        super(TemporalConv, self).__init__()
        pad = (kernel_size + (kernel_size - 1) * (dilation - 1) - 1) // 2
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=(kernel_size, 1),
            padding=(pad, 0),
            stride=(stride, 1),
            dilation=(dilation, 1))

        self.bn = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class SelfAttention(nn.Module):
    def __init__(self, in_channels, out_channels, num_heads=4):
        super(SelfAttention, self).__init__()
        assert out_channels % num_heads == 0, "out_channels 必须是 num_heads 的倍数"
        self.num_heads = num_heads
        self.head_dim = out_channels // num_heads

        self.conv_q = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv_k = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.conv_v = nn.Conv2d(in_channels, out_channels, kernel_size=1)

        self.fc_out = nn.Conv2d(out_channels, out_channels, kernel_size=1)

    def forward(self, x):
        N, C, T, V = x.shape
        q = self.conv_q(x)
        k = self.conv_k(x)
        v = self.conv_v(x)

        q = q.view(N, self.num_heads, self.head_dim, T, V)
        k = k.view(N, self.num_heads, self.head_dim, T, V)
        v = v.view(N, self.num_heads, self.head_dim, T, V)

        q = q.permute(0, 1, 3, 4, 2).contiguous()
        k = k.permute(0, 1, 3, 4, 2).contiguous()
        attention_scores = torch.matmul(q, k.permute(0, 1, 4, 3, 2))
        attention_scores = attention_scores / math.sqrt(self.head_dim)

        attention_weights = F.softmax(attention_scores, dim=-1)

        v = v.permute(0, 1, 3, 4, 2).contiguous()
        out = torch.matmul(attention_weights, v)

        out = out.view(N, self.num_heads * self.head_dim, T, V)
        out = self.fc_out(out)

        return out


class MultiScale_TemporalConv(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 dilations=[1, 2, 3, 4],
                 residual=True,
                 residual_kernel_size=1):

        super().__init__()
        assert out_channels % (len(dilations) + 2) == 0, '# out channels should be multiples of # branches'

        # Multiple branches of temporal convolution
        self.num_branches = len(dilations) + 2
        branch_channels = out_channels // self.num_branches
        if type(kernel_size) == list:
            assert len(kernel_size) == len(dilations)
        else:
            kernel_size = [kernel_size] * len(dilations)
        # Temporal Convolution branches
        self.branches = nn.ModuleList([
            nn.Sequential(
                nn.Conv2d(
                    in_channels,
                    branch_channels,
                    kernel_size=1,
                    padding=0),
                nn.BatchNorm2d(branch_channels),
                nn.ReLU(inplace=True),
                TemporalConv(
                    branch_channels,
                    branch_channels,
                    kernel_size=ks,
                    stride=stride,
                    dilation=dilation),
            )
            for ks, dilation in zip(kernel_size, dilations)
        ])

        # Additional Max & 1x1 branch
        self.branches.append(nn.Sequential(
            nn.Conv2d(in_channels, branch_channels, kernel_size=1, padding=0),
            nn.BatchNorm2d(branch_channels),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=(3, 1), stride=(stride, 1), padding=(1, 0)),
            nn.BatchNorm2d(branch_channels)  # 为什么还要加bn
        ))

        self.branches.append(nn.Sequential(
            nn.Conv2d(in_channels, branch_channels, kernel_size=1, padding=0, stride=(stride, 1)),
            nn.BatchNorm2d(branch_channels)
        ))

        # Residual connection
        if not residual:
            self.residual = lambda x: 0
        elif (in_channels == out_channels) and (stride == 1):
            self.residual = lambda x: x
        else:
            self.residual = TemporalConv(in_channels, out_channels, kernel_size=residual_kernel_size, stride=stride)
        # self.selfattention = SelfAttention(out_channels, out_channels)

        # initialize
        self.apply(weights_init)

    def forward(self, x):
        # Input dim: (N,C,T,V)
        res = self.residual(x)
        branch_outs = []
        for tempconv in self.branches:
            out = tempconv(x)
            branch_outs.append(out)
        # 这里的是所有的结果concat,dim=1
        out = torch.cat(branch_outs, dim=1)
        # 这里尝试在多尺度时间卷积上加入自注意力机制效果
        # out = self.selfattention(out) + out
        out += res
        return out


class CTRGC(nn.Module):
    def __init__(self, in_channels, out_channels, rel_reduction=8, mid_reduction=1):
        super(CTRGC, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        if in_channels == 3 or in_channels == 9:
            self.rel_channels = 8
            self.mid_channels = 16
        else:
            self.rel_channels = in_channels // rel_reduction
            self.mid_channels = in_channels // mid_reduction
        self.conv1 = nn.Conv2d(6, self.rel_channels, kernel_size=1)
        self.conv2 = nn.Conv2d(self.in_channels, self.rel_channels, kernel_size=1)
        self.conv3 = nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1)
        self.conv4 = nn.Conv2d(self.rel_channels, self.out_channels, kernel_size=1)
        self.tanh = nn.Tanh()
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                conv_init(m)
            elif isinstance(m, nn.BatchNorm2d):
                bn_init(m, 1)

    def forward(self, x, A=None, alpha=1):
        x1, x2, x3 = self.conv1(x), self.conv2(x), self.conv3(x)
        graph = self.tanh(x1.mean(-2).unsqueeze(-1) - x2.mean(-2).unsqueeze(-2))
        graph = self.conv4(graph)
        graph_c = graph * alpha + (A.unsqueeze(0).unsqueeze(0) if A is not None else 0)  # N,C,V,V
        y = torch.einsum('ncuv,nctv->nctu', graph_c, x3)
        return y, graph


class unit_tcn(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
        super(unit_tcn, self).__init__()
        pad = int((kernel_size - 1) / 2)
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
                              stride=(stride, 1))

        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        conv_init(self.conv)
        bn_init(self.bn, 1)

    def forward(self, x):
        x = self.bn(self.conv(x))
        return x


class unit_gcn(nn.Module):
    def __init__(self, in_channels, out_channels, A, coff_embedding=4, adaptive=True, residual=True):
        super(unit_gcn, self).__init__()
        inter_channels = out_channels // coff_embedding
        self.inter_c = inter_channels
        self.out_c = out_channels
        self.in_c = in_channels
        self.adaptive = adaptive
        self.num_subset = A.shape[0]
        self.convs = nn.ModuleList()
        for i in range(self.num_subset):
            self.convs.append(CTRGC(in_channels, out_channels))

        if residual:
            if in_channels != out_channels:
                self.down = nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, 1),
                    nn.BatchNorm2d(out_channels)
                )
            else:
                self.down = lambda x: x
        else:
            self.down = lambda x: 0
        if self.adaptive:
            self.PA = nn.Parameter(torch.from_numpy(A.astype(np.float32)))
        else:
            self.A = Variable(torch.from_numpy(A.astype(np.float32)), requires_grad=False)
        self.alpha = nn.Parameter(torch.zeros(1))
        self.bn = nn.BatchNorm2d(out_channels)
        self.soft = nn.Softmax(-2)
        self.relu = nn.ReLU(inplace=True)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                conv_init(m)
            elif isinstance(m, nn.BatchNorm2d):
                bn_init(m, 1)
        bn_init(self.bn, 1e-6)

    def forward(self, x):
        y = None
        graph_list = []
        if self.adaptive:
            A = self.PA
        else:
            A = self.A.cuda(x.get_device())
        for i in range(self.num_subset):
            z, graph = self.convs[i](x, A[i], self.alpha)
            graph_list.append(graph)
            y = z + y if y is not None else z
        y = self.bn(y)
        y += self.down(x)
        y = self.relu(y)

        return y, torch.stack(graph_list, 1)


class TCN_GCN_unit(nn.Module):
    def __init__(self, in_channels, out_channels, A, stride=1, residual=True, adaptive=True, kernel_size=5,
                 dilations=[1, 2]):
        super(TCN_GCN_unit, self).__init__()
        self.gcn1 = unit_gcn(in_channels, out_channels, A, adaptive=adaptive)
        # self.tcn1 = TemporalConv(out_channels, out_channels, stride=stride)
        self.tcn1 = MultiScale_TemporalConv(out_channels, out_channels, kernel_size=kernel_size, stride=stride,
                                            dilations=dilations,
                                            residual=True)
        self.relu = nn.ReLU(inplace=True)
        if not residual:
            self.residual = lambda x: 0

        elif (in_channels == out_channels) and (stride == 1):
            self.residual = lambda x: x

        else:
            self.residual = unit_tcn(in_channels, out_channels, kernel_size=1, stride=stride)

    def forward(self, x):
        z, graph = self.gcn1(x)
        y = self.relu(self.tcn1(z) + self.residual(x))
        return y, graph


class Model(nn.Module):
    def __init__(self, num_class=155, num_point=17, num_person=2, graph=None, graph_args=dict(), in_channels=3,
                 drop_out=0, adaptive=True):
        super(Model, self).__init__()

        if graph is None:
            raise ValueError()
        else:
            Graph = import_class(graph)
            self.graph = Graph(**graph_args)

        A = self.graph.A  # 3,25,25

        self.num_class = num_class
        self.num_point = num_point
        self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)

        base_channel = 64
        # self.l1 = TCN_GCN_unit(in_channels, base_channel, A, residual=False, adaptive=adaptive)
        # self.l2 = TCN_GCN_unit(base_channel, base_channel, A, adaptive=adaptive)
        # self.l3 = TCN_GCN_unit(base_channel, base_channel, A, adaptive=adaptive)
        # self.l4 = TCN_GCN_unit(base_channel, base_channel, A, adaptive=adaptive)
        # self.l5 = TCN_GCN_unit(base_channel, base_channel * 2, A, stride=2, adaptive=adaptive)
        # self.l6 = TCN_GCN_unit(base_channel * 2, base_channel * 2, A, adaptive=adaptive)
        # self.l7 = TCN_GCN_unit(base_channel * 2, base_channel * 2, A, adaptive=adaptive)
        # self.l8 = TCN_GCN_unit(base_channel * 2, base_channel * 4, A, stride=2, adaptive=adaptive)
        # self.l9 = TCN_GCN_unit(base_channel * 4, base_channel * 4, A, adaptive=adaptive)
        # self.l10 = TCN_GCN_unit(base_channel * 4, base_channel * 4, A, adaptive=adaptive)
        # self.fc = nn.Linear(base_channel * 4, num_class)
        self.l1 = TCN_GCN_unit(in_channels, base_channel, A, residual=False, adaptive=adaptive)
        self.l2 = TCN_GCN_unit(base_channel, base_channel, A, adaptive=adaptive)
        self.l3 = TCN_GCN_unit(base_channel, base_channel * 2, A, stride=2, adaptive=adaptive)
        self.l4 = TCN_GCN_unit(base_channel * 2, base_channel * 2, A, adaptive=adaptive)
        self.l5 = TCN_GCN_unit(base_channel * 2, base_channel * 2, A, adaptive=adaptive)
        self.l6 = TCN_GCN_unit(base_channel * 2, base_channel * 4, A, stride=2, adaptive=adaptive)
        self.l7 = TCN_GCN_unit(base_channel * 4, base_channel * 4, A, adaptive=adaptive)
        self.fc = nn.Linear(base_channel * 4, num_class)
        nn.init.normal_(self.fc.weight, 0, math.sqrt(2. / num_class))
        bn_init(self.data_bn, 1)
        if drop_out:
            self.drop_out = nn.Dropout(drop_out)
        else:
            self.drop_out = lambda x: x

        def partDivison(self, graph):
            # _, num_joints, _ = graph.size()
            _, k, u, v = graph.size()  # n k u v
            head = [0, 1, 2, 3, 4, 5, 6]  # nose, eyes, and ears
            left_arm = [5, 7, 9]  # arms connections
            right_arm = [6, 8, 10]  # arms connections
            # arm = [5, 6, 7, 8, 9, 10]
            torso = [5, 6, 11, 12]  # torso connections
            left_leg = [11, 13, 15]  # legs connections
            right_leg = [12, 14, 16]

            graph_list = []
            part_list = [[head, left_arm, right_arm, torso, left_leg, right_leg]]

            for part in part_list:
                part_grah = graph[:, :, :, part].mean(dim=-1, keepdim=True)
                graph_list.append(part_grah)
            return torch.cat(graph_list, -1)

    def forward(self, x):
        if torch.isnan(x).any() or torch.isinf(x).any():
            print("Input data contains NaN or Inf.")
        if len(x.shape) == 3:
            N, T, VC = x.shape
            x = x.view(N, T, self.num_point, -1).permute(0, 3, 1, 2).contiguous().unsqueeze(-1)
        N, C, T, V, M = x.size()

        x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
        x = self.data_bn(x)
        x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
        # x, _ = self.l1(x)
        # x, _ = self.l2(x)
        # x, _ = self.l3(x)
        # x, _ = self.l4(x)
        # x, _ = self.l5(x)
        # x, _ = self.l6(x)
        # x, _ = self.l7(x)
        # x, _ = self.l8(x)
        # x, _ = self.l9(x)
        # x, graph = self.l10(x)
        x, _ = self.l1(x)
        x, _ = self.l2(x)
        x, _ = self.l3(x)
        x, _ = self.l4(x)
        x, _ = self.l5(x)
        x, _ = self.l6(x)
        x, graph = self.l7(x)
        # N*M,C,T,V
        c_new = x.size(1)
        x = x.view(N, M, c_new, -1)
        x = x.mean(3).mean(1)
        x = self.drop_out(x)
        graph2 = graph.view(N, M, -1, c_new, V, V)
        # graph4 = torch.einsum('n m k c u v, n m k c v l -> n m k c u l', graph2, graph2)
        graph2 = graph2.view(N, M, -1, c_new, V, V).mean(1).mean(2).view(N, -1)
        # graph4 = graph4.view(N, M, -1, c_new, V, V).mean(1).mean(2).view(N, -1)
        # graph = torch.cat([graph2, graph4], -1)
        return self.fc(x), graph2
相关推荐
Wishell201511 分钟前
为什么深度学习和神经网络要使用 GPU?
pytorch
起名字什么的好难27 分钟前
conda虚拟环境安装pytorch gpu版
人工智能·pytorch·conda
18号房客34 分钟前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
百家方案36 分钟前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
云起无垠42 分钟前
“AI+Security”系列第4期(一)之“洞” 见未来:AI 驱动的漏洞挖掘新范式
人工智能
Auc241 小时前
使用scrapy框架爬取微博热搜榜
开发语言·python
QQ_7781329741 小时前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
梦想画家1 小时前
Python Polars快速入门指南:LazyFrames
python·数据分析·polars
清 晨1 小时前
Web3 生态全景:创新与发展之路
人工智能·web3·去中心化·智能合约
程序猿000001号1 小时前
使用Python的Seaborn库进行数据可视化
开发语言·python·信息可视化