动态规划-背包问题——1049.最后一块石头的重量II

1.题目解析

题目来源

|-----------------------------------------------------------------------------------------------------------------------|
| 1049.最后一块石头的重量II------力扣 |

测试用例

2.算法原理

首先需要将该问题转化为0-1背包问题后再做分析

1.状态表示

根据数学中的知识我们知道将一个数字分为两个子数后求这两个子数的最小差值,那么就要求这两个子数尽可能接近于原数字的一半,那么就一定会出现一大一小两个数或者两个相等的数,这时就需要去找总和不大于原数字一半的数字,然后找到另一半,用另一半减去找到的数字即可,所以需要二维dp表,第一个下标表示已经寻找数字的区间,第二个下标表示此时已寻找并选择数字的总和,即dp[i][j]:在[1,i]区间选择的数字总和不大于(小于或等于) j 的总和大小

2.状态转移方程

首先依旧是背包问题的思路,对最后一个位置进行分类讨论,首先判断当第i个位置不会选取,此时就找到dp[i-1][j],判断此时的方法数;然后判断选取第i个位置的数,此时就需要寻找到dp[i-1][j-nums[i-1]]这个位置的dp表的值,然后加到总方法数中去,当然需要判断j>=nums[i-1]

3.初始化

4.填表顺序

从上到下,每一行从左到右

5.返回值

返回两个子数相减,也就是sum - dp[n][aim]*2(sum - dp[n][aim] 与 dp[n][aim]两个子数)

3.实战代码

cpp 复制代码
class Solution {
public:
    int lastStoneWeightII(vector<int>& stones)
    {
        int sum = 0;
        for(auto e : stones)
        {
            sum += e;
        }    
        int aim = sum / 2;
        int n = stones.size();
        vector<vector<int>> dp(n+1,vector<int>(aim+1));

        for(int i = 1;i <= n;i++)
        {
            for(int j = 0;j <= aim;j++)
            {
                dp[i][j] = dp[i-1][j];
                if(j >= stones[i-1])
                {
                    dp[i][j] = max(dp[i][j],
                    dp[i-1][j - stones[i-1]] + stones[i-1]);
                }
            }
        }

        return sum - dp[n][aim] - dp[n][aim];
    }
};

代码解析

空间优化

相关推荐
菜的不敢吱声44 分钟前
swift学习第4天
服务器·学习·swift
じ☆冷颜〃4 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
想进部的张同学4 小时前
hilinux-3599---设备学习---以及部署yolo
学习·yolo·海思
数据大魔方4 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
POLITE34 小时前
Leetcode 23. 合并 K 个升序链表 (Day 12)
算法·leetcode·链表
fpcc5 小时前
C++编程实践——链式调用的实践
c++
楚来客5 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
HyperAI超神经5 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
Echo_NGC22375 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
会员果汁5 小时前
leetcode-动态规划-买卖股票
算法·leetcode·动态规划