动态规划-背包问题——1049.最后一块石头的重量II

1.题目解析

题目来源

|-----------------------------------------------------------------------------------------------------------------------|
| 1049.最后一块石头的重量II------力扣 |

测试用例

2.算法原理

首先需要将该问题转化为0-1背包问题后再做分析

1.状态表示

根据数学中的知识我们知道将一个数字分为两个子数后求这两个子数的最小差值,那么就要求这两个子数尽可能接近于原数字的一半,那么就一定会出现一大一小两个数或者两个相等的数,这时就需要去找总和不大于原数字一半的数字,然后找到另一半,用另一半减去找到的数字即可,所以需要二维dp表,第一个下标表示已经寻找数字的区间,第二个下标表示此时已寻找并选择数字的总和,即dp[i][j]:在[1,i]区间选择的数字总和不大于(小于或等于) j 的总和大小

2.状态转移方程

首先依旧是背包问题的思路,对最后一个位置进行分类讨论,首先判断当第i个位置不会选取,此时就找到dp[i-1][j],判断此时的方法数;然后判断选取第i个位置的数,此时就需要寻找到dp[i-1][j-nums[i-1]]这个位置的dp表的值,然后加到总方法数中去,当然需要判断j>=nums[i-1]

3.初始化

4.填表顺序

从上到下,每一行从左到右

5.返回值

返回两个子数相减,也就是sum - dp[n][aim]*2(sum - dp[n][aim] 与 dp[n][aim]两个子数)

3.实战代码

cpp 复制代码
class Solution {
public:
    int lastStoneWeightII(vector<int>& stones)
    {
        int sum = 0;
        for(auto e : stones)
        {
            sum += e;
        }    
        int aim = sum / 2;
        int n = stones.size();
        vector<vector<int>> dp(n+1,vector<int>(aim+1));

        for(int i = 1;i <= n;i++)
        {
            for(int j = 0;j <= aim;j++)
            {
                dp[i][j] = dp[i-1][j];
                if(j >= stones[i-1])
                {
                    dp[i][j] = max(dp[i][j],
                    dp[i-1][j - stones[i-1]] + stones[i-1]);
                }
            }
        }

        return sum - dp[n][aim] - dp[n][aim];
    }
};

代码解析

空间优化

相关推荐
持续前进的奋斗鸭2 分钟前
Postman测试学习(1)
学习·postman
Humbunklung15 分钟前
机器学习算法分类
算法·机器学习·分类
hello kitty w20 分钟前
Python学习(7) ----- Python起源
linux·python·学习
一叶知秋秋20 分钟前
python学习day39
人工智能·深度学习·学习
Ai多利24 分钟前
深度学习登上Nature子刊!特征选择创新思路
人工智能·算法·计算机视觉·多模态·特征选择
愈努力俞幸运1 小时前
c++ 头文件
开发语言·c++
智慧城市20301 小时前
174页PPT家居制造业集团战略规划和运营管控规划方案
动态规划
永日456701 小时前
学习日记-day24-6.8
开发语言·学习·php
安和昂1 小时前
【iOS】 Block再学习
学习·ios·cocoa
pop_xiaoli1 小时前
OC学习—命名规范
学习·ios