由于项目中以一个环节需要使用kdtree ,对性能要求比较严苛,所以看看那个kdtree效率高一些。对比了opencv和pcl。
#include <array>
#include <deque>
#include <fstream>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/flann.hpp>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <iostream>
#include <iostream>
#include <cstdlib> // 用于 rand()
#include <ctime> // 用于 time()
int main() {
// 初始化随机种子
std::srand(std::time(0));
// 生成 5000 个随机的二维点
int numPoints = 5000;
std::vector<cv::Point2f> points;
pcl::PointCloud<pcl::PointXY>::Ptr cloud(new pcl::PointCloud<pcl::PointXY>);
// 随机生成点,范围为 (-100, 100)
for (int i = 0; i < numPoints; ++i) {
float x = static_cast<float>(rand() % 200 - 100); // x 坐标在 [-100, 100] 范围内
float y = static_cast<float>(rand() % 200 - 100); // y 坐标在 [-100, 100] 范围内
points.push_back(cv::Point2f(x, y));
cloud->points.push_back(pcl::PointXY(x, y));
}
// 2. 将点转换为 cv::Mat 格式
cv::Mat pointMat(points.size(), 2, CV_32F); // 每个点是 2D(x, y)
for (size_t i = 0; i < points.size(); i++) {
pointMat.at<float>(i, 0) = points[i].x;
pointMat.at<float>(i, 1) = points[i].y;
}
// 3. 创建 KD-Tree 索引(使用 FLANN)
cv::flann::Index kdtree(pointMat, cv::flann::KDTreeIndexParams(4)); // 4 表示树的分支数
// 获取程序开始时的时钟时间
std::clock_t start = std::clock();
for(int i = 0 ;i < 200; ++i){
std::vector<int> indices(1); // 最近邻的索引
std::vector<float> dists(1); // 最近邻的距离
float x = static_cast<float>(rand() % 200 - 100); // x 坐标在 [-100, 100] 范围内
float y = static_cast<float>(rand() % 200 - 100); // y 坐标在 [-100, 100] 范围内
cv::Mat query = (cv::Mat_<float>(1, 2) << x, y);
kdtree.knnSearch(query, indices, dists, 1, cv::flann::SearchParams(32));
// std::cout << "Query point: " << query << std::endl;
// std::cout << "Closest point: " << pointMat.row(indices[0]) << std::endl;
// std::cout << "Distance: " << dists[0] << std::endl;
// std::cout << "----------------" << std::endl;
}
std::clock_t end = std::clock();
// 计算并输出经过的时间,单位是秒
double duration = double(end - start) / CLOCKS_PER_SEC;
std::cout << "opencv kdtree 搜索时间: " << duration << " 秒" << std::endl;
/
pcl::KdTreeFLANN<pcl::PointXY> pcl_kdtree;
pcl_kdtree.setInputCloud(cloud);
start = std::clock();
for(int i = 0 ;i < 200; ++i){
std::vector<int> indices(1); // 最近邻的索引
std::vector<float> dists(1); // 最近邻的距离
float x = static_cast<float>(rand() % 200 - 100); // x 坐标在 [-100, 100] 范围内
float y = static_cast<float>(rand() % 200 - 100); // y 坐标在 [-100, 100] 范围内
pcl::PointXY searchPoint;
searchPoint.x = x;
searchPoint.y = y;
pcl_kdtree.nearestKSearch(searchPoint,1, indices, dists);
// std::cout << "Query point: " << query << std::endl;
// std::cout << "Closest point: " << pointMat.row(indices[0]) << std::endl;
// std::cout << "Distance: " << dists[0] << std::endl;
// std::cout << "----------------" << std::endl;
}
end = std::clock();
// 计算并输出经过的时间,单位是秒
duration = double(end - start) / CLOCKS_PER_SEC;
std::cout << "pcl kdtree 搜索时间: " << duration << " 秒" << std::endl;
return 0;
}
CMakeLists.txt
# 设置 CMake 最低版本要求
cmake_minimum_required(VERSION 3.10)
# 设置项目名称
project(test_kdtree)
# 查找 OpenCV 包
find_package(OpenCV REQUIRED)
find_package(PCL REQUIRED)
# 显示 OpenCV 的版本和路径
message(STATUS "OpenCV version: ${OpenCV_VERSION}")
message(STATUS "OpenCV_INCLUDE_DIRS: ${OpenCV_INCLUDE_DIRS}")
message(STATUS "OpenCV_LIBS: ${OpenCV_LIBS}")
# 设置源文件
set(SOURCE_FILES test_kdtree.cpp)
# 添加可执行文件
add_executable(${PROJECT_NAME} ${SOURCE_FILES})
# 链接 OpenCV 库到目标程序
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${PCL_LIBRARIES})
# 包含 OpenCV 的头文件路径
target_include_directories(${PROJECT_NAME} PRIVATE ${OpenCV_INCLUDE_DIRS})
结果: