Spark 读取 HDFS 文件时 RDD 分区数的确定原理与源码分析

在 Spark 中,RDD 的分区数对于并行计算的效率非常重要,SparkCore 读取 HDFS 文件时 RDD 分区数的确定受多方面因素的影响。本文将从源码的角度分析 Spark 如何确定 RDD 分区数,并通过代码示例和案例帮助理解分区策略。

Spark RDD 分区数确定的源码解析

Spark 读取 HDFS 文件时,分区数主要由 文件块大小 (block size)、分片大小 (split size)、期望分区数(spark.default.parallelism)等参数共同决定。

1. splitSize 的确定

Spark 读取 HDFS 文件时,会根据文件的总大小和分区期望数来计算每个分区的大小(splitSize)。源码如下:

scala 复制代码
val goalSize = totalSize / math.max(minPartitions, 1)
val splitSize = Math.max(minSize, Math.min(goalSize, blockSize))
  • goalSize :每个分区的目标大小,由总文件大小除以分区数(minPartitions)计算得出。
  • splitSize :最终的分区大小,取 goalSize 与 HDFS blockSize 之间的较小值,确保每个分区数据量不会超过一个 HDFS 块的大小。
2. 代码示例:分区数计算

假设一个文件的大小为 1 GB,块大小为 128 MB,期望分区数(spark.default.parallelism)为 8。则每个分区的目标大小 goalSize 为 128 MB(1 GB / 8),最终的 splitSize 为 128 MB(和块大小相同)。这时文件会被分为 8 个分区。

3. 示例代码:RDD 分区数确定
scala 复制代码
import org.apache.spark.{SparkConf, SparkContext}

object HDFSPartitionExample {
  def main(args: Array[String]): Unit = {
    // 创建 SparkContext
    val conf = new SparkConf().setAppName("HDFS Partition Example").setMaster("local")
    val sc = new SparkContext(conf)

    // 读取 HDFS 文件
    val filePath = "hdfs://path/to/file"
    val rdd = sc.textFile(filePath, minPartitions = 8) // 设置最小分区数为 8
    println(s"分区数: ${rdd.getNumPartitions}")

    // 查看每个分区的数据量
    val partitionSizes = rdd.mapPartitionsWithIndex { (idx, iter) =>
      Iterator((idx, iter.size))
    }.collect()

    partitionSizes.foreach { case (index, size) =>
      println(s"分区 $index: 数据量 $size 条记录")
    }

    sc.stop()
  }
}
4. 实验结果分析
  • 1 GB 文件,128 MB 块大小,8 个期望分区:生成 8 个分区,每个分区 128 MB。
  • 1 GB 文件,64 MB 块大小,10 个期望分区 :由于 goalSize 为 100 MB,实际每个分区大小取 64 MB(块大小)。生成 16 个分区,每个分区 64 MB。
  • 1 GB 文件,256 MB 块大小,4 个期望分区goalSize 为 250 MB,splitSize 为 250 MB,生成 4 个分区,每个分区 250 MB。

总结

  1. Spark 通过 goalSizeblockSize 来平衡分区数量与块大小。
  2. 分区数会随着文件大小、块大小、期望分区数等参数变化。
  3. 分区数设定不合理会影响性能,例如分区数过多会导致任务调度开销增加,分区数过少则可能导致计算资源未充分利用。
相关推荐
睎zyl4 小时前
Spark自定义分区器-基础
大数据·分布式·spark
元6335 小时前
搭建spark-local模式
大数据·spark
元6338 小时前
运行Spark程序-在shell中运行
spark
炒空心菜菜8 小时前
MapReduce 实现 WordCount
java·开发语言·ide·后端·spark·eclipse·mapreduce
lqlj223311 小时前
Spark SQL 读取 CSV 文件,并将数据写入 MySQL 数据库
数据库·sql·spark
漂流瓶66666616 小时前
运行Spark程序-在shell中运行 --SparkConf 和 SparkContext
大数据·分布式·spark
lqlj223316 小时前
RDD案例数据清洗
大数据·分布式·spark
心仪悦悦18 小时前
RDD的自定义分区器
大数据·分布式·spark
Freedom℡18 小时前
在scala中sparkSQL连接masql并添加新数据
spark
我爱写代码?1 天前
MapReduce架构-打包运行
大数据·spark