Spark 读取 HDFS 文件时 RDD 分区数的确定原理与源码分析

在 Spark 中,RDD 的分区数对于并行计算的效率非常重要,SparkCore 读取 HDFS 文件时 RDD 分区数的确定受多方面因素的影响。本文将从源码的角度分析 Spark 如何确定 RDD 分区数,并通过代码示例和案例帮助理解分区策略。

Spark RDD 分区数确定的源码解析

Spark 读取 HDFS 文件时,分区数主要由 文件块大小 (block size)、分片大小 (split size)、期望分区数(spark.default.parallelism)等参数共同决定。

1. splitSize 的确定

Spark 读取 HDFS 文件时,会根据文件的总大小和分区期望数来计算每个分区的大小(splitSize)。源码如下:

scala 复制代码
val goalSize = totalSize / math.max(minPartitions, 1)
val splitSize = Math.max(minSize, Math.min(goalSize, blockSize))
  • goalSize :每个分区的目标大小,由总文件大小除以分区数(minPartitions)计算得出。
  • splitSize :最终的分区大小,取 goalSize 与 HDFS blockSize 之间的较小值,确保每个分区数据量不会超过一个 HDFS 块的大小。
2. 代码示例:分区数计算

假设一个文件的大小为 1 GB,块大小为 128 MB,期望分区数(spark.default.parallelism)为 8。则每个分区的目标大小 goalSize 为 128 MB(1 GB / 8),最终的 splitSize 为 128 MB(和块大小相同)。这时文件会被分为 8 个分区。

3. 示例代码:RDD 分区数确定
scala 复制代码
import org.apache.spark.{SparkConf, SparkContext}

object HDFSPartitionExample {
  def main(args: Array[String]): Unit = {
    // 创建 SparkContext
    val conf = new SparkConf().setAppName("HDFS Partition Example").setMaster("local")
    val sc = new SparkContext(conf)

    // 读取 HDFS 文件
    val filePath = "hdfs://path/to/file"
    val rdd = sc.textFile(filePath, minPartitions = 8) // 设置最小分区数为 8
    println(s"分区数: ${rdd.getNumPartitions}")

    // 查看每个分区的数据量
    val partitionSizes = rdd.mapPartitionsWithIndex { (idx, iter) =>
      Iterator((idx, iter.size))
    }.collect()

    partitionSizes.foreach { case (index, size) =>
      println(s"分区 $index: 数据量 $size 条记录")
    }

    sc.stop()
  }
}
4. 实验结果分析
  • 1 GB 文件,128 MB 块大小,8 个期望分区:生成 8 个分区,每个分区 128 MB。
  • 1 GB 文件,64 MB 块大小,10 个期望分区 :由于 goalSize 为 100 MB,实际每个分区大小取 64 MB(块大小)。生成 16 个分区,每个分区 64 MB。
  • 1 GB 文件,256 MB 块大小,4 个期望分区goalSize 为 250 MB,splitSize 为 250 MB,生成 4 个分区,每个分区 250 MB。

总结

  1. Spark 通过 goalSizeblockSize 来平衡分区数量与块大小。
  2. 分区数会随着文件大小、块大小、期望分区数等参数变化。
  3. 分区数设定不合理会影响性能,例如分区数过多会导致任务调度开销增加,分区数过少则可能导致计算资源未充分利用。
相关推荐
NPE~11 小时前
[docker/大数据]Spark快速入门
大数据·分布式·docker·spark·教程
派可数据BI可视化1 天前
解读商业智能BI,数据仓库中的元数据
大数据·数据仓库·数据分析·spark·商业智能bi
源图客1 天前
Spark读取MySQL数据库表
数据库·mysql·spark
A 计算机毕业设计-小途2 天前
大四零基础用Vue+ElementUI一周做完化妆品推荐系统?
java·大数据·hadoop·python·spark·毕业设计·毕设
青云交3 天前
Java 大视界 -- Java 大数据分布式计算在基因测序数据分析与精准医疗中的应用(400)
java·hadoop·spark·分布式计算·基因测序·java 大数据·精准医疗
晴天彩虹雨3 天前
存算分离与云原生:数据平台的新基石
大数据·hadoop·云原生·spark
更深兼春远3 天前
spark+scala安装部署
大数据·spark·scala
哈哈很哈哈4 天前
Spark 运行流程核心组件(三)任务执行
大数据·分布式·spark
BYSJMG4 天前
计算机大数据毕业设计推荐:基于Spark的气候疾病传播可视化分析系统【Hadoop、python、spark】
大数据·hadoop·python·信息可视化·spark·django·课程设计
Direction_Wind4 天前
粗粮厂的基于spark的通用olap之间的同步工具项目
大数据·分布式·spark