<项目代码>YOLOv8 玉米地杂草识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的博客<数据集>玉米地杂草识别数据集<目标检测>

数据集下载链接:数据集下载链接

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

相关推荐
一念&4 分钟前
今日科技热点 | 量子计算突破、AI芯片与5G加速行业变革
人工智能·科技·量子计算
2501_9247311119 分钟前
智慧矿山误报率↓83%!陌讯多模态融合算法在矿用设备监控的落地优化
人工智能·算法·目标检测·视觉检测
码界筑梦坊22 分钟前
173-基于Flask的微博舆情数据分析系统
后端·python·数据分析·flask·毕业设计
attitude.x43 分钟前
GEO优化供应商:AI搜索时代的“答案”构建与移山科技的引领,2025高性价比实战指南
人工智能·科技
nightunderblackcat1 小时前
新手向:异步编程入门asyncio最佳实践
前端·数据库·python
weixin_448617051 小时前
疏老师-python训练营-Day54Inception网络及其思考
python
windSnowLi1 小时前
Python opencv识别图片中重叠圆的圆心位置
开发语言·python·opencv
井云AI2 小时前
井云智能体封装小程序:独立部署多开版 | 自定义LOGO/域名,打造专属AI智能体平台
人工智能·后端·小程序·前端框架·coze智能体·智能体网站·智能体小程序
张较瘦_2 小时前
[论文阅读] 人工智能 + 软件工程 | 技术债务管理新范式:五步法工作坊与行动研究实践
人工智能·软件工程
杨杨杨大侠2 小时前
Spring AI 系列(一):Spring AI 基础概念与架构入门
人工智能·spring·架构