flink StreamGraph 构造flink任务

文章目录

背景

通常使用flink 提供的高级算子来编写flink 任务,对底层不是很了解,尤其是如何生成作业图的细节

下面通过构造一个有向无环图,来实际看一下

主要步骤

1.增加source

2.增加operator

  1. 增加一条边,连接source和operator

  2. 增加sink

  3. 增加一条边,连接operator和sink

代码

bash 复制代码
 // Step 1: Create basic configurations
        Configuration configuration = new Configuration();
        ExecutionConfig executionConfig = new ExecutionConfig();
        CheckpointConfig checkpointConfig = new CheckpointConfig();
        SavepointRestoreSettings savepointRestoreSettings = SavepointRestoreSettings.none();

        // Step 2: Create a new StreamGraph instance
        StreamGraph streamGraph = new StreamGraph(configuration, executionConfig, checkpointConfig, savepointRestoreSettings);

        // Step 3: Add a source operator

        GeneratorFunction<Long, String> generatorFunction = index -> "Number: " + index;
        DataGeneratorSource<String> source = new DataGeneratorSource<>(generatorFunction, Long.MAX_VALUE, RateLimiterStrategy.perSecond(1), Types.STRING);
        SourceOperatorFactory<String> sourceOperatorFactory = new SourceOperatorFactory<>(source, WatermarkStrategy.noWatermarks());
        streamGraph.addSource(1, "sourceNode", "sourceDescription", sourceOperatorFactory, TypeInformation.of(String.class), TypeInformation.of(String.class), "sourceSlot");

        // Step 4: Add a map operator to transform the data
        StreamMap<String, String> mapOperator = new StreamMap<>(new MapFunction<String, String>() {
            @Override
            public String map(String value) throws Exception {
                return value;
            }
        });
        SimpleOperatorFactory<String> mapOperatorFactory = SimpleOperatorFactory.of(mapOperator);
        streamGraph.addOperator(2, "mapNode", "mapDescription", mapOperatorFactory, TypeInformation.of(String.class), TypeInformation.of(String.class), "mapSlot");

        // Step 5: Connect source and map operator
        streamGraph.addEdge(1, 2, 0);

        // Step 6: Add a sink operator to consume the data
        StreamMap<String, String> sinkOperator = new StreamMap<>(new MapFunction<String, String>() {
            @Override
            public String map(String value) throws Exception {
                System.out.println(value);
                return value;
            }
        });
        SimpleOperatorFactory<String> sinkOperatorFactory = SimpleOperatorFactory.of(sinkOperator);
        streamGraph.addSink(3, "sinkNode", "sinkDescription", sinkOperatorFactory, TypeInformation.of(String.class), TypeInformation.of(String.class), "sinkSlot");

        // Step 7: Connect map and sink operator
        streamGraph.addEdge(2, 3, 0);
        streamGraph.setTimeCharacteristic(TimeCharacteristic.ProcessingTime);
        streamGraph.setMaxParallelism(1,1);
        streamGraph.setMaxParallelism(2,1);
        streamGraph.setMaxParallelism(3,1);
        streamGraph.setGlobalStreamExchangeMode(GlobalStreamExchangeMode.ALL_EDGES_PIPELINED);


        // Step 8: Convert StreamGraph to JobGraph
        JobGraph jobGraph = streamGraph.getJobGraph();


        // Step 9: Set up a MiniCluster for local execution
        MiniClusterConfiguration miniClusterConfig = new MiniClusterConfiguration.Builder()
                .setNumTaskManagers(10)
                .setNumSlotsPerTaskManager(10)
                .build();
        MiniCluster miniCluster = new MiniCluster(miniClusterConfig);

        // Step 10: Start the MiniCluster
        miniCluster.start();

        // Step 11: Submit the job to the MiniCluster
        JobExecutionResult result = miniCluster.executeJobBlocking(jobGraph);
        System.out.println("Job completed with result: " + result);

        // Step 12: Stop the MiniCluster
        miniCluster.close();
相关推荐
Musennn10 分钟前
MySQL多条件查询深度解析
大数据·数据库·mysql
递归尽头是星辰29 分钟前
大数据场景下数据导出的架构演进与EasyExcel实战方案
大数据·系统架构·easyexcel·大数据导出·导出优化
Hello World......2 小时前
Java求职面试揭秘:从Spring到微服务的技术挑战
大数据·hadoop·spring boot·微服务·spark·java面试·互联网大厂
数据与人工智能律师8 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
一只专注api接口开发的技术猿10 小时前
企业级电商数据对接:1688 商品详情 API 接口开发与优化实践
大数据·前端·爬虫
今天我又学废了12 小时前
Spark,SparkSQL操作Mysql, 创建数据库和表
大数据·mysql·spark
杰克逊的日记13 小时前
Flink运维要点
大数据·运维·flink
markuszhang17 小时前
Elasticsearch 官网阅读之 Term-level Queries
大数据·elasticsearch·搜索引擎
Hello World......18 小时前
Java求职面试:从核心技术到大数据与AI的场景应用
大数据·java面试·技术栈·互联网大厂·ai服务
张伯毅19 小时前
Flink SQL 将kafka topic的数据写到另外一个topic里面
sql·flink·kafka