【TDOA最小二乘解算】两步最小二乘迭代的TDOA解算方法,适用于二维平面、自适应锚点(附MATLAB代码)

本文所述的MATLAB代码实现了一个基于两步加权最小二乘法的二维目标定位算法,利用多个锚点(基站)和时间差到达(TDOA)数据来估计未知目标的位置。

文章目录

运行结果

  • 3个锚点时的情况:
  • 10个锚点时的情况:
  • 可一键更改锚点数量:

  • 命令行会输出真实值和估计值的坐标信息:

代码

matlab 复制代码
% 两步加权最小二乘,定位二维目标、N个锚点
% 2024-11-07/Ver1
%% 初始化
clc;clear;close all;
rng(1);
% 定义参数和待测点位置
num_stations = 10; % 基站数量(锚点数量)
std_var1 = 1e-9; %TDOA误差
% 固定基站位置
stations_position = 100*randn(num_stations,2);
c = 3e8;
% 生成轨迹数组
position = 50*ones(1,2)+50*randn(1,2);
% TDOA 建模

% 完整代码见:https://gf.bilibili.com/item/detail/1106616012

代码功能概述

该代码模拟了一个二维空间中的目标定位问题,使用随机生成的锚点位置和目标轨迹,并通过最小二乘法进行位置估计。目标的真实位置与估计位置通过图形可视化展示,便于对算法效果的直观理解。

代码结构和详细说明

初始化部分

matlab 复制代码
clc; clear; close all;
rng(1);
  • clc:清除命令窗口的内容。
  • clear:清除工作空间中的所有变量。
  • close all:关闭所有打开的图形窗口。
  • rng(1):设置随机数生成器的种子,以确保结果的可重复性。

参数和待测点位置定义

matlab 复制代码
num_stations = 10; % 基站数量(锚点数量)
std_var1 = 1e-9; % TDOA误差
stations_position = 100 * randn(num_stations, 2); % 随机生成基站位置
c = 3e8; % 声速
  • num_stations:定义基站的数量,这里设为10个。
  • std_var1:设定TDOA测量的标准差,用于模拟测量误差。
  • stations_position:随机生成基站在二维空间中的位置,坐标值为正态分布。
  • c:定义声速(单位:米/秒)。

生成目标轨迹

matlab 复制代码
position = 50 * ones(1, 2) + 50 * randn(1, 2);
  • 生成一个目标位置,初始位置为(50, 50)附近的一个随机点。

TDOA建模

matlab 复制代码
delta = ones(num_stations, 1) * position - stations_position; % 计算未知点与基站的相对位置
r_ideal = (sum(delta.^2, 2)).^(1/2); % 计算理想距离
delta_t = r_ideal / c + std_var1 * randn(size(r_ideal)); % 计算TDOA并添加噪声
r = delta_t * c; % 计算实际距离
  • delta:计算未知目标与各基站之间的相对位置(矢量)。
  • r_ideal:根据相对位置计算目标到各个基站的理想距离。
  • delta_t:根据理想距离计算到达时间,并添加高斯噪声。
  • r:将到达时间转换为实际距离。

距离差计算

matlab 复制代码
Ri = r(2:end, :);
R1 = ones(num_stations - 1, 1) * r(1, :);
R = Ri - R1; % 计算距离差
  • 计算从第一个基站到其他基站的距离差,这将用于后续的最小二乘法计算。

迭代初值估算

matlab 复制代码
position_est = mean(stations_position); % 基站位置均值作为初始估计
  • 使用所有基站位置的均值作为初始位置估计。

最小二乘迭代

matlab 复制代码
for i1 = 1:100 % 可设置迭代次数
    ...
end
  • 迭代100次以优化位置估计,每次迭代计算新的位置估计。

粗迭代部分

matlab 复制代码
h = (R(1))^2 + norm(stations_position(1, :))^2 - norm(stations_position(2, :))^2 + 2 * (R(1)) * norm(position_est - stations_position(1, :));
Ga = 2 * (stations_position(1, :) - stations_position(2, :));
B = 2 * diag([norm(position_est - stations_position(2, :));]);
  • 计算初步的残差和雅可比矩阵的构造。

细节迭代部分

matlab 复制代码
for i2 = 3:num_stations
    ...
end
  • 在每次迭代中,更新残差h和雅可比矩阵A,并计算最小二乘解。

最小二乘解

matlab 复制代码
Q = std_var1^2 * (0.5 * eye(num_stations - 1) + 0.5 * ones(num_stations - 1));
W = (B * Q * B')^(-1); % 计算加权矩阵
u_star = (Ga' * W * Ga)^(-1) * Ga' * W * h; % 计算最小二乘解
  • 构造加权矩阵W,计算最小二乘解u_star,用于更新位置估计。

结果绘图

matlab 复制代码
figure;
hold on
plot(stations_position(:, 1), stations_position(:, 2), 'r*'); % 绘制基站位置
plot(position(1), position(2), 'ok'); % 绘制真实目标位置
plot(position_est(1), position_est(2), '.b'); % 绘制估计目标位置
xlabel('X轴'); ylabel('Y轴');
legend('锚点', '真实值', '估计值');
  • 可视化锚点、真实位置和估计位置,便于观察定位效果。

10. 输出结果

matlab 复制代码
fprintf('真实值坐标:%s\n', num2str(position));
fprintf('估计值坐标:%s\n', num2str(position_est));
  • 打印真实目标位置和估计位置的坐标。

总结

该 M A T L A B MATLAB MATLAB代码使用两步加权最小二乘法通过 T D O A TDOA TDOA技术实现了二维目标定位。它通过随机生成的锚点和目标位置进行模拟,展示了如何通过迭代优化算法来提高位置估计的准确性。代码结构清晰,适合用于理解和实现基于 T D O A TDOA TDOA的定位算法。

如有需要,可私信或通过下方的卡片联系我

相关推荐
夏木~43 分钟前
Oracle 中什么情况下 可以使用 EXISTS 替代 IN 提高查询效率
数据库·oracle
W21551 小时前
Liunx下MySQL:表的约束
数据库·mysql
黄名富1 小时前
Redis 附加功能(二)— 自动过期、流水线与事务及Lua脚本
java·数据库·redis·lua
言、雲1 小时前
从tryLock()源码来出发,解析Redisson的重试机制和看门狗机制
java·开发语言·数据库
一个程序员_zhangzhen2 小时前
sqlserver新建用户并分配对视图的只读权限
数据库·sqlserver
zfj3212 小时前
学技术学英文:代码中的锁:悲观锁和乐观锁
数据库·乐观锁··悲观锁·竞态条件
吴冰_hogan2 小时前
MySQL InnoDB 存储引擎 Redo Log(重做日志)详解
数据库·oracle
nbsaas-boot2 小时前
探索 JSON 数据在关系型数据库中的应用:MySQL 与 SQL Server 的对比
数据库·mysql·json
cmdch20172 小时前
Mybatis加密解密查询操作(sql前),where要传入加密后的字段时遇到的问题
数据库·sql·mybatis
程序员学习随笔2 小时前
PostgreSQL技术内幕21:SysLogger日志收集器的工作原理
数据库·postgresql