机器学习———特征工程

1 特征工程概念

特征工程就是对特征进行相关的处理,一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程,特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。

2 特征工程API

DictVectorizer 字典特征提取

CountVectorizer 文本特征提取

TfidfVectorizer TF-IDF文本特征词的重要程度特征提取

MinMaxScaler 归一化

StandardScaler 标准化

VarianceThreshold 底方差过滤降维

PCA 主成分分析降维

转换器对象调用fit_transform()进行转换, 其中fit用于计算数据,transform进行最终转换

fit_transform()可以使用fit()和transform()代替

data_new = transfer.fit_transform(data)
可写成
transfer.fit(data)
data_new = transfer.transform(data)

3 DictVectorizer 字典列表特征提取

稀疏矩阵

一个矩阵中大部分元素为零,只有少数元素是非零的矩阵。 例如,在一个1000 x 1000的矩阵中,如果只有1000个非零元素,那么这个矩阵就是稀疏的。

三元组表

三元组表就是一种稀疏矩阵类型数据,存储非零元素的行索引、列索引和值:

(行,列) 数据

(0,0) 10

(0,1) 20

(2,0) 90

(2,20) 8

(8,0) 70

表示除了列出的有值, 其余全是0

非稀疏矩阵(稠密矩阵)

矩阵中非零元素的数量与总元素数量相比接近或相等,也就是说矩阵中的大部分元素都是非零的。

api

  • 创建转换器对象:

sklearn.feature_extraction.DictVectorizer(sparse=True)

参数:

sparse=True返回类型为csr_matrix的稀疏矩阵

sparse=False表示返回的是数组,数组可以调用.toarray()方法将稀疏矩阵转换为数组

  • 转换器对象调用:

fit_transform(data)

参数:

data为一维字典数组或一维字典列表,返回转化后的矩阵或数组

转换器对象get_feature_names_out()方法获取特征名

示例:

from sklearn.feature_extraction import DictVectorizer
import pandas as pd 

# sklearn.feature_extraction.DictVectorizer(sparse=True)

data = [{'city': '北京', 'temperature': 100}, 
{'city': '上海', 'temperature': 60}, 
{'city': '深圳', 'temperature': 30}]

# 初始化工具(字典变成向量的工具器)
# sparse=False表示返回的是数组
model=DictVectorizer(sparse=False)
data=model.fit_transform(data)
print(data,type(data))
# 获取所有的特征名称
print(model.get_feature_names_out())

# sparse=True返回类型为csr_matrix的稀疏矩阵,可以调用.toarray()方法将稀疏矩阵转换为数组
model=DictVectorizer(sparse=True)
data=model.fit_transform(data)
print(data,type(data))
print(model.get_feature_names_out())
arr=data.toarray()
print(arr)

sparse=False结果:

sparse=True结果:

4 CountVectorizer 文本特征提取

(1)API

sklearn.feature_extraction.text.CountVectorizer(stop_words=' ')

关键字:

参数stop_words,值为list,表示词的黑名单(不提取的词)

fit_transform函数的返回值为稀疏矩阵

(2) 英文文本提取

# CountVectorizer 文本特征提取
from sklearn.feature_extraction.text import CountVectorizer
corpus = [  'I love machine learning. Its awesome.', 
            'Its a book amazon book', 
            'Amazon is a great company']
# 创建一个词频提取对象
# 构造函数关键字参数stop_words,值为list,表示词的黑名单(不提取的词)
vectorizer = CountVectorizer(stop_words=['amazon'])
# 提取词频
x=vectorizer.fit_transform(corpus)
print(x)
print(x.toarray())
print(vectorizer.get_feature_names_out())

输出结果:

(3) 中文文本提取

中文文本不像英文文本,中文文本文字之间没有空格,所以要先分词,一般使用jieba分词.

pip install jieba

jieba使用函数:jieba.cut(data)

示例:

# 中文文本提取
from sklearn.feature_extraction.text import CountVectorizer
import jieba

# 传入没有断词的文本
def my_cut(text):
    return ' '.join(jieba.cut(text))

corpus = ['我来到北京清华大学',  
          '他来到了网易杭研大厦',  
          '小明硕士毕业与中国科学院']
vectorizer = CountVectorizer(stop_words=[])
x=vectorizer.fit_transform(my_cut(el) for el in corpus)
print(x)
print(x.toarray())
print(vectorizer.get_feature_names_out())

ddata=pd.DataFrame(x.toarray(),columns=vectorizer.get_feature_names_out())
ddata

输出结果:

5 TfidfVectorizer TF-IDF文本特征词的重要程度特征提取

(1) 算法

词频(Term Frequency, TF), 表示一个词在当前篇文章中的重要性

逆文档频率(Inverse Document Frequency, IDF), 反映了词在整个文档集合中的稀有程度

(2) API

sklearn.feature_extraction.text.TfidfVectorizer()

构造函数关键字参数stop_words,表示词特征黑名单

fit_transform函数的返回值为稀疏矩阵

(3) 示例

from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
import jieba
import pandas as pd
def my_cut(text):
    return ' '.join(jieba.cut(text))

data=['小明来到北京清华大学', '小明来到了网易杭研大厦', '小明硕士毕业与中国科学院']
data = [my_cut(i) for i in data]
print(data)
transfer=TfidfVectorizer(stop_words=[])
res=transfer.fit_transform(data)
print(res.toarray())
print(transfer.get_feature_names_out())
ddata=pd.DataFrame(res.toarray(),columns=transfer.get_feature_names_out())
ddata

输出结果:

6 无量纲化-预处理

无量纲,即没有单位的数据

(1) MinMaxScaler 归一化

通过对原始数据进行变换把数据映射到指定区间(默认为0-1)

1、公式:

若要缩放到其他区间,可以使用公式:x=x*(max-min)+min;

2、归一化API

sklearn.preprocessing.MinMaxScaler(feature_range)

参数:feature_range=(0,1) 归一化后的值域,可以自己设定

fit_transform函数归一化的原始数据类型可以是list、DataFrame和ndarray, 不可以是稀疏矩阵

fit_transform函数的返回值为ndarray

3、示例:

from sklearn.preprocessing import MinMaxScaler
import pandas as pd

scaler=MinMaxScaler(feature_range=(0,1))
data=pd.read_excel('./src/test01.xlsx')
print(data.values)
arr=scaler.fit_transform(data.values)
print(arr)
4、缺点

最大值和最小值容易受到异常点影响,如一个异常值远远大于正常值,所以鲁棒性较差。所以常使用标准化的无量钢化

(2)StandardScaler 标准化

它的目的是将不同特征的数值范围缩放到统一的标准范围,以便更好地适应一些机器学习算法,特别是那些对输入数据的尺度敏感的算法。

1、标准化公式

最常见的标准化方法是Z-score标准化,也称为零均值标准化。它通过对每个特征的值减去其均值,再除以其标准差,将数据转换为均值为0,标准差为1的分布。这可以通过以下公式计算:

其中,z是转换后的数值,x是原始数据的值,μ是该特征的均值,σ是该特征的标准差

2、标准化 API

sklearn.preprocessing.StandardScale

与MinMaxScaler一样,原始数据类型可以是list、DataFrame和ndarray

fit_transform函数的返回值为ndarray, 归一化后得到的数据类型都是ndarray

3、标准化示例
from sklearn.preprocessing import StandardScaler
import numpy as np
# 初始化标准化工具
scaler=StandardScaler()
np.random.seed(7)

data=np.random.randint(0,100,(10,4))
print(data)
x=scaler.fit_transform(data)
print(x)
4、注意点

在数据预处理中,特别是使用如StandardScale这样的数据转换器时,fit、fit_transform和transform这三个方法的使用是至关重要的,它们各自有不同的作用:

  1. fit:

    • 这个方法用来计算数据的统计信息,比如均值和标准差(在StandardScale的情况下)。这些统计信息随后会被用于数据的标准化。

    • 你应当仅在训练集上使用fit方法。

  2. fit_transform:

    • 这个方法相当于先调用fit再调用transform,但是它在内部执行得更高效。

    • 它同样应当仅在训练集上使用,它会计算训练集的统计信息并立即应用到该训练集上。

  3. transform:

    • 这个方法使用已经通过fit方法计算出的统计信息来转换数据。

    • 它可以应用于任何数据集,包括训练集、验证集或测试集,但是应用时使用的统计信息必须来自于训练集。

**总结来说:**我们常常是先fit_transform(x_train)然后再transform(x_text)

7 特征降维

实际数据中,有时候特征很多,会增加计算量,降维就是去掉一些特征,或者转化多个特征为少量个特征

特征降维其目的:是减少数据集的维度,同时尽可能保留数据的重要信息。

1 .特征选择

(a) VarianceThreshold 低方差过滤特征选择

如果一个特征的方差很小,说明这个特征的值在样本中几乎相同或变化不大,包含的信息量很少,模型很难通过该特征区分不同的对象

(b) 根据相关系数的特征选择

皮尔逊相关系数(Pearson correlation coefficient)是一种度量两个变量之间线性相关性的统计量。它提供了两个变量间关系的方向(正相关或负相关)和强度的信息。皮尔逊相关系数的取值范围是 [−1,1],相关系数\\rho的绝对值为0-1之间,绝对值越大,表示越相关,当两特征完全相关时,两特征的值表示的向量是在同一条直线上,当两特征的相关系数绝对值很小时,两特征值表示的向量接近在同一条直线上。

api:

scipy.stats.personr(x, y) 计算两特征之间的相关性

返回对象有两个属性:

statistic皮尔逊相关系数[-1,1]

pvalue零假设(了解),统计上评估两个变量之间的相关性,越小越相关

示例:

from scipy.stats import pearsonr
import pandas as pd
def association_demo():
    data = pd.read_csv('src/factor_returns.csv')
    data = data.iloc[:, 1:-2]
        # 计算某两个变量之间的相关系数
    r1 = pearsonr(data["pe_ratio"], data["pb_ratio"])
    print(r1.statistic) #-0.0043893227799362555 相关性, 负数表示负相关
    print(r1.pvalue) #0.8327205496590723        正相关性
    r2 = pearsonr(data['revenue'], data['total_expense'])
    print(r2) #PearsonRResult(statistic=0.9958450413136111, pvalue=0.0)
    return None
association_demo()
相关推荐
ForRunner1232 小时前
使用 Python 和 Selenium 解决 hCaptcha:完整指南
人工智能·爬虫·python·自动化
铭瑾熙3 小时前
深度学习之RNNs
人工智能·深度学习
pen-ai3 小时前
【机器学习】29. 关联规则挖掘(Association Rule Mining)
人工智能·算法·机器学习·数据挖掘
钰见梵星3 小时前
深度神经网络
人工智能·神经网络·dnn
Hello.Reader3 小时前
深入解析生成对抗网络(GAN)
人工智能·神经网络·生成对抗网络
醒了就刷牙4 小时前
Bottom-Up Attention(借助CNN)
人工智能·神经网络·cnn
虞书欣的64 小时前
Python小游戏27——飞翔的小鸟
开发语言·人工智能·游戏·pycharm·pygame
chenchihwen4 小时前
《生成式 AI》课程 第3講 CODE TASK 任务3:自定义任务的机器人
人工智能·机器人
chenchihwen4 小时前
《生成式 AI》课程 第3講 CODE TASK 任务2:角色扮演的机器人
人工智能·机器人