基于Pytorch实现图像分类——基于jupyter

分类任务

  • 网络基本构建与训练方法,常用函数解
  • torch.nn.functional模块
  • nn.Module模块

MNIST数据集下载

python 复制代码
from pathlib import Path
import requests

DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"

PATH.mkdir(parents=True, exist_ok=True)

URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"

if not (PATH / FILENAME).exists():
        content = requests.get(URL + FILENAME).content
        (PATH / FILENAME).open("wb").write(content)

解压数据集

python 复制代码
import pickle
import gzip

with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
        ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

查阅数据

python 复制代码
from matplotlib import pyplot
import numpy as np

pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)

网络模型搭建

python 复制代码
import torch

x_train, y_train, x_valid, y_valid = map(
    torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape
x_train, x_train.shape, y_train.min(), y_train.max()
print(x_train, y_train)
print(x_train.shape)
print(y_train.min(), y_train.max())

常用函数介绍

python 复制代码
import torch.nn.functional as F

loss_func = F.cross_entropy

def model(xb):
    return xb.mm(weights) + bias
bs = 64
xb = x_train[0:bs]  # a mini-batch from x
yb = y_train[0:bs]
weights = torch.randn([784, 10], dtype = torch.float,  requires_grad = True) 
bs = 64
bias = torch.zeros(10, requires_grad=True)

print(loss_func(model(xb), yb))

模型搭建

python 复制代码
from torch import nn

class Mnist_NN(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden1 = nn.Linear(784, 128)
        self.hidden2 = nn.Linear(128, 256)
        self.out  = nn.Linear(256, 10)

    def forward(self, x):
        x = F.relu(self.hidden1(x))
        x = F.relu(self.hidden2(x))
        x = self.out(x)
        return x
net = Mnist_NN()
print(net)

Mnist_NN(

(hidden1): Linear(in_features=784, out_features=128, bias=True)

(hidden2): Linear(in_features=128, out_features=256, bias=True)

(out): Linear(in_features=256, out_features=10, bias=True)

)

python 复制代码
for name, parameter in net.named_parameters():
    print(name, parameter,parameter.size())

dataset数据接口

python 复制代码
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader

train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=bs, shuffle=True)

valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=bs * 2)

def get_data(train_ds, valid_ds, bs):
    return (
        DataLoader(train_ds, batch_size=bs, shuffle=True),
        DataLoader(valid_ds, batch_size=bs * 2),
    )
  • 一般在训练模型时加上model.train(),这样会正常使用Batch Normalization和 Dropout
  • 测试的时候一般选择model.eval(),这样就不会使用Batch Normalization和 Dropout
python 复制代码
import numpy as np
from torch import optim
def fit(steps, model, loss_func, opt, train_dl, valid_dl):
    for step in range(steps):
        model.train()
        for xb, yb in train_dl:
            loss_batch(model, loss_func, xb, yb, opt)

        model.eval()
        with torch.no_grad():
            losses, nums = zip(
                *[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
            )
        val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
        print('当前step:'+str(step), '验证集损失:'+str(val_loss))

def get_model():
    model = Mnist_NN()
    return model, optim.SGD(model.parameters(), lr=0.001)
def loss_batch(model, loss_func, xb, yb, opt=None):
    loss = loss_func(model(xb), yb)

    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()

    return loss.item(), len(xb)
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(25, model, loss_func, opt, train_dl, valid_dl)
相关推荐
koo3641 天前
pytorch深度学习笔记12
pytorch·笔记·深度学习
koo3641 天前
pytorch深度学习笔记9
pytorch·笔记·深度学习
创作者mateo1 天前
PyTorch 入门笔记配套【完整练习代码】
人工智能·pytorch·笔记
创作者mateo1 天前
PyTorch 入门学习笔记(基础篇)一
pytorch·笔记·学习
victory04311 天前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
EchoL、1 天前
指定GPU设备
pytorch·笔记
m0_613607011 天前
小土堆-P3-笔记
pytorch·python·深度学习
爱打代码的小林1 天前
CNN 卷积神经网络 (MNIST 手写数字数据集的分类)
人工智能·分类·cnn
MistaCloud1 天前
Pytorch深入浅出(十五)之GPU加速与设备管理
人工智能·pytorch·python·深度学习
盼小辉丶1 天前
PyTorch实战——基于文本引导的图像生成技术与Stable Diffusion实践
pytorch·深度学习·stable diffusion·生成模型