训练误差or测试误差与特征个数之间的关系--基于R语言实现

a 生成数据集,数据由 Y = X β + ϵ Y=X\beta+\epsilon Y=Xβ+ϵ产生,其中 p = 20 , n = 1000 p=20,n=1000 p=20,n=1000

{r} 复制代码
#way1
set.seed(1)
p = 20
n = 1000
x = matrix(rnorm(n*p), n, p)
B = rnorm(p)
B[3] = 0
B[4] = 0
B[9] = 0
B[19] = 0
B[10] = 0
eps = rnorm(p)
y = x %*% B + eps#%*%为矩阵乘法
{r} 复制代码
#way2
set.seed(1)
a=rnorm(20*1000)
x=matrix(a,1000,20)
eps=rnorm(1000)
beta=c(1,1,0,0,5.5,2,5,0,4,0,1.5,11,10.5,3.3,2.8,0,9,0,2,6.6)
y=x%*%beta+eps#%*%为矩阵乘法

其中部分元素为0。

b 划分数据为训练集和测试集

{r} 复制代码
#way1
train = sample(seq(1000), 100, replace = FALSE)
y.train = y[train,]
y.test = y[-train,]
x.train = x[train,]
x.test = x[-train,]
{r} 复制代码
#way2
train=sample(1:1000,100,rep=F)
test=(-train)

c 训练集MSE分析

{r} 复制代码
#way1
library(leaps)
regfit.full = regsubsets(y~., data=data.frame(x=x.train, y=y.train), nvmax=p)
val.errors = rep(NA, p)
x_cols = colnames(x, do.NULL=FALSE, prefix="x.")
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.train[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]
  val.errors[i] = mean((y.train - pred)^2)
}
plot(val.errors, ylab="Training MSE", pch=19, type="b")
{r} 复制代码
#way2
library(leaps)
d=data.frame(y,x)
fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
s1=summary(fit1)
mse=(s1$rss)/100
mse
which.min(mse)
plot(1:20,mse,type="b",xlab="number of predictors",ylab="traininng MSE")
{r} 复制代码
> d=data.frame(y,x)
> fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
> s1=summary(fit1)
> s1
Subset selection object
Call: regsubsets.formula(y ~ ., data = d, subset = train, nvmax = 20)
20 Variables  (and intercept)
    Forced in Forced out
X1      FALSE      FALSE
X2      FALSE      FALSE
X3      FALSE      FALSE
X4      FALSE      FALSE
X5      FALSE      FALSE
X6      FALSE      FALSE
X7      FALSE      FALSE
X8      FALSE      FALSE
X9      FALSE      FALSE
X10     FALSE      FALSE
X11     FALSE      FALSE
X12     FALSE      FALSE
X13     FALSE      FALSE
X14     FALSE      FALSE
X15     FALSE      FALSE
X16     FALSE      FALSE
X17     FALSE      FALSE
X18     FALSE      FALSE
X19     FALSE      FALSE
X20     FALSE      FALSE
1 subsets of each size up to 20
Selection Algorithm: exhaustive
          X1  X2  X3  X4  X5  X6  X7  X8  X9  X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
1  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " "
2  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " "*" " " " " " "
3  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " " "
4  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
5  ( 1 )  " " " " " " " " "*" " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
6  ( 1 )  " " " " " " " " "*" " " "*" " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
7  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" " " " " " " "*" " " " " "*"
8  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" " " " " "*" " " " " "*"
9  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " " " "*"
10  ( 1 ) " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
11  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
12  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
13  ( 1 ) " " "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
14  ( 1 ) "*" "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
15  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
16  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
17  ( 1 ) "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
18  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
19  ( 1 ) "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
20  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

d 测试集MSE分析

{r} 复制代码
#way1
val.errors = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.test[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]#测试集的Y
  val.errors[i] = mean((y.test - pred)^2)#计算MSE
}
plot(val.errors, ylab="Test MSE", pch=19, type="b")
{r} 复制代码
#way2
xmat=model.matrix(y~.,data=d)
mse1=rep(NA,20)
for(i in 1:20){
  pred=xmat[test,][,names(coefficients(
    fit1,id=i))]%*%coefficients(fit1,id=i)
  mse1[i]=mean((pred-y[test])^2)
}
mse1
plot(1:20,mse1,type="b",xlab="model size",ylab="test MSE")


e 当模型含有多少个特征时,测试集MSE最小。

{r} 复制代码
#way1
which.min(val.errors)

16 parameter model has the smallest test MSE.

{r} 复制代码
#way2
which.min(mse1)

15 parameter model has the smallest test MSE.

f 测试集MSE最小的模型与真实模型比较起来有何不同,比较模型系数。

{r} 复制代码
#way1
coef(regfit.full, id=16)

Caught all but one zeroed out coefficient at x.2,x.4,x.10,x.19.

{r} 复制代码
#way2
coefficients(fit1,id=15)

Caught all but one zeroed out coefficient at x.3,x.4,x.8,x.10,x.16.

g 作出 r r r在一定范围内取值时 ∑ j = 1 p ( β j − β ^ j r ) 2 \sqrt{\sum_{j=1}^p\left(\beta_j-\hat{\beta}_j^r\right)^2} ∑j=1p(βj−β^jr)2 的图像,其中 β ^ j r \hat{\beta}_j^r β^jr为包含 r r r个预测变量的最优模型中第 j j j个系数的估计值。

{r} 复制代码
#way1
val.errors = rep(NA, p)
a = rep(NA, p)
b = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  a[i] = length(coefi)-1
  b[i] = sqrt(
    sum((B[x_cols %in% names(coefi)] - coefi[names(coefi) %in% x_cols])^2) +
      sum(B[!(x_cols %in% names(coefi))])^2)
}
plot(x=a, y=b, xlab="number of coefficients",
     ylab="error between estimated and true coefficients")
which.min(b)


Model with 9 coefficients (10 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 16 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

{r} 复制代码
#way2
xcol=colnames(x,do.NULL =F,prefix = "X")
s=rep(NA,20)
for(i in 1:20){
  s[i]=sqrt(sum(beta[xcol%in%names(coefficients(fit1,id=i)[-1])]-
                  coefficients(fit1,id=i)[-1])^2+
              sum(beta[!xcol%in%names(coefficients(fit1,id=i)[-1])])^2)
}

plot(1:20,s,type="b",xlab="numbers of coeffieients",
     ylab='error between estimated and true coefficients')
which.min(s)


Model with 15 coefficients (15 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 15 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

相关推荐
侃侃_天下1 小时前
最终的信号类
开发语言·c++·算法
echoarts2 小时前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust
Aomnitrix2 小时前
知识管理新范式——cpolar+Wiki.js打造企业级分布式知识库
开发语言·javascript·分布式
每天回答3个问题2 小时前
UE5C++编译遇到MSB3073
开发语言·c++·ue5
伍哥的传说3 小时前
Vite Plugin PWA – 零配置构建现代渐进式Web应用
开发语言·前端·javascript·web app·pwa·service worker·workbox
小莞尔3 小时前
【51单片机】【protues仿真】 基于51单片机八路抢答器系统
c语言·开发语言·单片机·嵌入式硬件·51单片机
我是菜鸟0713号3 小时前
Qt 中 OPC UA 通讯实战
开发语言·qt
JCBP_3 小时前
QT(4)
开发语言·汇编·c++·qt·算法
Brookty3 小时前
【JavaEE】线程安全-内存可见性、指令全排序
java·开发语言·后端·java-ee·线程安全·内存可见性·指令重排序
百锦再4 小时前
[特殊字符] Python在CentOS系统执行深度指南
开发语言·python·plotly·django·centos·virtualenv·pygame