训练误差or测试误差与特征个数之间的关系--基于R语言实现

a 生成数据集,数据由 Y = X β + ϵ Y=X\beta+\epsilon Y=Xβ+ϵ产生,其中 p = 20 , n = 1000 p=20,n=1000 p=20,n=1000

{r} 复制代码
#way1
set.seed(1)
p = 20
n = 1000
x = matrix(rnorm(n*p), n, p)
B = rnorm(p)
B[3] = 0
B[4] = 0
B[9] = 0
B[19] = 0
B[10] = 0
eps = rnorm(p)
y = x %*% B + eps#%*%为矩阵乘法
{r} 复制代码
#way2
set.seed(1)
a=rnorm(20*1000)
x=matrix(a,1000,20)
eps=rnorm(1000)
beta=c(1,1,0,0,5.5,2,5,0,4,0,1.5,11,10.5,3.3,2.8,0,9,0,2,6.6)
y=x%*%beta+eps#%*%为矩阵乘法

其中部分元素为0。

b 划分数据为训练集和测试集

{r} 复制代码
#way1
train = sample(seq(1000), 100, replace = FALSE)
y.train = y[train,]
y.test = y[-train,]
x.train = x[train,]
x.test = x[-train,]
{r} 复制代码
#way2
train=sample(1:1000,100,rep=F)
test=(-train)

c 训练集MSE分析

{r} 复制代码
#way1
library(leaps)
regfit.full = regsubsets(y~., data=data.frame(x=x.train, y=y.train), nvmax=p)
val.errors = rep(NA, p)
x_cols = colnames(x, do.NULL=FALSE, prefix="x.")
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.train[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]
  val.errors[i] = mean((y.train - pred)^2)
}
plot(val.errors, ylab="Training MSE", pch=19, type="b")
{r} 复制代码
#way2
library(leaps)
d=data.frame(y,x)
fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
s1=summary(fit1)
mse=(s1$rss)/100
mse
which.min(mse)
plot(1:20,mse,type="b",xlab="number of predictors",ylab="traininng MSE")
{r} 复制代码
> d=data.frame(y,x)
> fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
> s1=summary(fit1)
> s1
Subset selection object
Call: regsubsets.formula(y ~ ., data = d, subset = train, nvmax = 20)
20 Variables  (and intercept)
    Forced in Forced out
X1      FALSE      FALSE
X2      FALSE      FALSE
X3      FALSE      FALSE
X4      FALSE      FALSE
X5      FALSE      FALSE
X6      FALSE      FALSE
X7      FALSE      FALSE
X8      FALSE      FALSE
X9      FALSE      FALSE
X10     FALSE      FALSE
X11     FALSE      FALSE
X12     FALSE      FALSE
X13     FALSE      FALSE
X14     FALSE      FALSE
X15     FALSE      FALSE
X16     FALSE      FALSE
X17     FALSE      FALSE
X18     FALSE      FALSE
X19     FALSE      FALSE
X20     FALSE      FALSE
1 subsets of each size up to 20
Selection Algorithm: exhaustive
          X1  X2  X3  X4  X5  X6  X7  X8  X9  X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
1  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " "
2  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " "*" " " " " " "
3  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " " "
4  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
5  ( 1 )  " " " " " " " " "*" " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
6  ( 1 )  " " " " " " " " "*" " " "*" " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
7  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" " " " " " " "*" " " " " "*"
8  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" " " " " "*" " " " " "*"
9  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " " " "*"
10  ( 1 ) " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
11  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
12  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
13  ( 1 ) " " "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
14  ( 1 ) "*" "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
15  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
16  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
17  ( 1 ) "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
18  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
19  ( 1 ) "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
20  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

d 测试集MSE分析

{r} 复制代码
#way1
val.errors = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.test[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]#测试集的Y
  val.errors[i] = mean((y.test - pred)^2)#计算MSE
}
plot(val.errors, ylab="Test MSE", pch=19, type="b")
{r} 复制代码
#way2
xmat=model.matrix(y~.,data=d)
mse1=rep(NA,20)
for(i in 1:20){
  pred=xmat[test,][,names(coefficients(
    fit1,id=i))]%*%coefficients(fit1,id=i)
  mse1[i]=mean((pred-y[test])^2)
}
mse1
plot(1:20,mse1,type="b",xlab="model size",ylab="test MSE")


e 当模型含有多少个特征时,测试集MSE最小。

{r} 复制代码
#way1
which.min(val.errors)

16 parameter model has the smallest test MSE.

{r} 复制代码
#way2
which.min(mse1)

15 parameter model has the smallest test MSE.

f 测试集MSE最小的模型与真实模型比较起来有何不同,比较模型系数。

{r} 复制代码
#way1
coef(regfit.full, id=16)

Caught all but one zeroed out coefficient at x.2,x.4,x.10,x.19.

{r} 复制代码
#way2
coefficients(fit1,id=15)

Caught all but one zeroed out coefficient at x.3,x.4,x.8,x.10,x.16.

g 作出 r r r在一定范围内取值时 ∑ j = 1 p ( β j − β ^ j r ) 2 \sqrt{\sum_{j=1}^p\left(\beta_j-\hat{\beta}_j^r\right)^2} ∑j=1p(βj−β^jr)2 的图像,其中 β ^ j r \hat{\beta}_j^r β^jr为包含 r r r个预测变量的最优模型中第 j j j个系数的估计值。

{r} 复制代码
#way1
val.errors = rep(NA, p)
a = rep(NA, p)
b = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  a[i] = length(coefi)-1
  b[i] = sqrt(
    sum((B[x_cols %in% names(coefi)] - coefi[names(coefi) %in% x_cols])^2) +
      sum(B[!(x_cols %in% names(coefi))])^2)
}
plot(x=a, y=b, xlab="number of coefficients",
     ylab="error between estimated and true coefficients")
which.min(b)


Model with 9 coefficients (10 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 16 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

{r} 复制代码
#way2
xcol=colnames(x,do.NULL =F,prefix = "X")
s=rep(NA,20)
for(i in 1:20){
  s[i]=sqrt(sum(beta[xcol%in%names(coefficients(fit1,id=i)[-1])]-
                  coefficients(fit1,id=i)[-1])^2+
              sum(beta[!xcol%in%names(coefficients(fit1,id=i)[-1])])^2)
}

plot(1:20,s,type="b",xlab="numbers of coeffieients",
     ylab='error between estimated and true coefficients')
which.min(s)


Model with 15 coefficients (15 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 15 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

相关推荐
不爱学习的小枫1 小时前
scala的集合
开发语言·scala
梦醒沉醉1 小时前
Scala的初步使用
开发语言·后端·scala
小白学大数据1 小时前
Fuel 爬虫:Scala 中的图片数据采集与分析
开发语言·爬虫·scala
贩卖纯净水.1 小时前
《React 属性与状态江湖:从验证到表单受控的实战探险》
开发语言·前端·javascript·react.js
JouJz1 小时前
Java基础系列:深入解析反射机制与代理模式及避坑指南
java·开发语言·代理模式
白羊不吃白菜2 小时前
PAT乙级(1101 B是A的多少倍)C语言解析
c语言·开发语言
一号言安2 小时前
牛客python蓝桥杯11-32(自用)
开发语言·python
鸽鸽程序猿2 小时前
【JavaEE】SpringIoC与SpringDI
java·开发语言·java-ee
maybe啊2 小时前
js 使用 Web Workers 来实现一个精确的倒计时,即使ios手机锁屏或页面进入后台,倒计时也不会暂停。
开发语言·前端·javascript
Ljw...2 小时前
序列化和反序列化(Linux)
linux·开发语言·网络·c++·tcp/ip·序列化反序列化