训练误差or测试误差与特征个数之间的关系--基于R语言实现

a 生成数据集,数据由 Y = X β + ϵ Y=X\beta+\epsilon Y=Xβ+ϵ产生,其中 p = 20 , n = 1000 p=20,n=1000 p=20,n=1000

{r} 复制代码
#way1
set.seed(1)
p = 20
n = 1000
x = matrix(rnorm(n*p), n, p)
B = rnorm(p)
B[3] = 0
B[4] = 0
B[9] = 0
B[19] = 0
B[10] = 0
eps = rnorm(p)
y = x %*% B + eps#%*%为矩阵乘法
{r} 复制代码
#way2
set.seed(1)
a=rnorm(20*1000)
x=matrix(a,1000,20)
eps=rnorm(1000)
beta=c(1,1,0,0,5.5,2,5,0,4,0,1.5,11,10.5,3.3,2.8,0,9,0,2,6.6)
y=x%*%beta+eps#%*%为矩阵乘法

其中部分元素为0。

b 划分数据为训练集和测试集

{r} 复制代码
#way1
train = sample(seq(1000), 100, replace = FALSE)
y.train = y[train,]
y.test = y[-train,]
x.train = x[train,]
x.test = x[-train,]
{r} 复制代码
#way2
train=sample(1:1000,100,rep=F)
test=(-train)

c 训练集MSE分析

{r} 复制代码
#way1
library(leaps)
regfit.full = regsubsets(y~., data=data.frame(x=x.train, y=y.train), nvmax=p)
val.errors = rep(NA, p)
x_cols = colnames(x, do.NULL=FALSE, prefix="x.")
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.train[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]
  val.errors[i] = mean((y.train - pred)^2)
}
plot(val.errors, ylab="Training MSE", pch=19, type="b")
{r} 复制代码
#way2
library(leaps)
d=data.frame(y,x)
fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
s1=summary(fit1)
mse=(s1$rss)/100
mse
which.min(mse)
plot(1:20,mse,type="b",xlab="number of predictors",ylab="traininng MSE")
{r} 复制代码
> d=data.frame(y,x)
> fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
> s1=summary(fit1)
> s1
Subset selection object
Call: regsubsets.formula(y ~ ., data = d, subset = train, nvmax = 20)
20 Variables  (and intercept)
    Forced in Forced out
X1      FALSE      FALSE
X2      FALSE      FALSE
X3      FALSE      FALSE
X4      FALSE      FALSE
X5      FALSE      FALSE
X6      FALSE      FALSE
X7      FALSE      FALSE
X8      FALSE      FALSE
X9      FALSE      FALSE
X10     FALSE      FALSE
X11     FALSE      FALSE
X12     FALSE      FALSE
X13     FALSE      FALSE
X14     FALSE      FALSE
X15     FALSE      FALSE
X16     FALSE      FALSE
X17     FALSE      FALSE
X18     FALSE      FALSE
X19     FALSE      FALSE
X20     FALSE      FALSE
1 subsets of each size up to 20
Selection Algorithm: exhaustive
          X1  X2  X3  X4  X5  X6  X7  X8  X9  X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
1  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " "
2  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " "*" " " " " " "
3  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " " "
4  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
5  ( 1 )  " " " " " " " " "*" " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
6  ( 1 )  " " " " " " " " "*" " " "*" " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
7  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" " " " " " " "*" " " " " "*"
8  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" " " " " "*" " " " " "*"
9  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " " " "*"
10  ( 1 ) " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
11  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
12  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
13  ( 1 ) " " "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
14  ( 1 ) "*" "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
15  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
16  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
17  ( 1 ) "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
18  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
19  ( 1 ) "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
20  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

d 测试集MSE分析

{r} 复制代码
#way1
val.errors = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.test[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]#测试集的Y
  val.errors[i] = mean((y.test - pred)^2)#计算MSE
}
plot(val.errors, ylab="Test MSE", pch=19, type="b")
{r} 复制代码
#way2
xmat=model.matrix(y~.,data=d)
mse1=rep(NA,20)
for(i in 1:20){
  pred=xmat[test,][,names(coefficients(
    fit1,id=i))]%*%coefficients(fit1,id=i)
  mse1[i]=mean((pred-y[test])^2)
}
mse1
plot(1:20,mse1,type="b",xlab="model size",ylab="test MSE")


e 当模型含有多少个特征时,测试集MSE最小。

{r} 复制代码
#way1
which.min(val.errors)

16 parameter model has the smallest test MSE.

{r} 复制代码
#way2
which.min(mse1)

15 parameter model has the smallest test MSE.

f 测试集MSE最小的模型与真实模型比较起来有何不同,比较模型系数。

{r} 复制代码
#way1
coef(regfit.full, id=16)

Caught all but one zeroed out coefficient at x.2,x.4,x.10,x.19.

{r} 复制代码
#way2
coefficients(fit1,id=15)

Caught all but one zeroed out coefficient at x.3,x.4,x.8,x.10,x.16.

g 作出 r r r在一定范围内取值时 ∑ j = 1 p ( β j − β ^ j r ) 2 \sqrt{\sum_{j=1}^p\left(\beta_j-\hat{\beta}_j^r\right)^2} ∑j=1p(βj−β^jr)2 的图像,其中 β ^ j r \hat{\beta}_j^r β^jr为包含 r r r个预测变量的最优模型中第 j j j个系数的估计值。

{r} 复制代码
#way1
val.errors = rep(NA, p)
a = rep(NA, p)
b = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  a[i] = length(coefi)-1
  b[i] = sqrt(
    sum((B[x_cols %in% names(coefi)] - coefi[names(coefi) %in% x_cols])^2) +
      sum(B[!(x_cols %in% names(coefi))])^2)
}
plot(x=a, y=b, xlab="number of coefficients",
     ylab="error between estimated and true coefficients")
which.min(b)


Model with 9 coefficients (10 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 16 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

{r} 复制代码
#way2
xcol=colnames(x,do.NULL =F,prefix = "X")
s=rep(NA,20)
for(i in 1:20){
  s[i]=sqrt(sum(beta[xcol%in%names(coefficients(fit1,id=i)[-1])]-
                  coefficients(fit1,id=i)[-1])^2+
              sum(beta[!xcol%in%names(coefficients(fit1,id=i)[-1])])^2)
}

plot(1:20,s,type="b",xlab="numbers of coeffieients",
     ylab='error between estimated and true coefficients')
which.min(s)


Model with 15 coefficients (15 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 15 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

相关推荐
Evand J36 分钟前
【MATLAB例程】基于USBL和DVL的线性回归误差补偿,对USBL和DVL导航数据进行相互补偿,提高定位精度,附代码下载链接
开发语言·matlab·线性回归·水下定位·usbl·dvl
爱喝白开水a2 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
Neverfadeaway2 小时前
【C语言】深入理解函数指针数组应用(4)
c语言·开发语言·算法·回调函数·转移表·c语言实现计算器
武子康2 小时前
Java-152 深入浅出 MongoDB 索引详解 从 MongoDB B-树 到 MySQL B+树 索引机制、数据结构与应用场景的全面对比分析
java·开发语言·数据库·sql·mongodb·性能优化·nosql
杰克尼2 小时前
JavaWeb_p165部门管理
java·开发语言·前端
一成码农2 小时前
JavaSE面向对象(下)
java·开发语言
偶尔的鼠标人2 小时前
Avalonia DataGrid 控件的LostFocus事件会多次触发
开发语言·c#
晚风残2 小时前
【C++ Primer】第十二章:动态内存管理
开发语言·c++·c++ primer
_extraordinary_3 小时前
Java Spring日志
java·开发语言·spring
初圣魔门首席弟子3 小时前
【C++ 学习】单词统计器:从 “代码乱炖” 到 “清晰可品” 的复习笔记
开发语言·c++