训练误差or测试误差与特征个数之间的关系--基于R语言实现

a 生成数据集,数据由 Y = X β + ϵ Y=X\beta+\epsilon Y=Xβ+ϵ产生,其中 p = 20 , n = 1000 p=20,n=1000 p=20,n=1000

{r} 复制代码
#way1
set.seed(1)
p = 20
n = 1000
x = matrix(rnorm(n*p), n, p)
B = rnorm(p)
B[3] = 0
B[4] = 0
B[9] = 0
B[19] = 0
B[10] = 0
eps = rnorm(p)
y = x %*% B + eps#%*%为矩阵乘法
{r} 复制代码
#way2
set.seed(1)
a=rnorm(20*1000)
x=matrix(a,1000,20)
eps=rnorm(1000)
beta=c(1,1,0,0,5.5,2,5,0,4,0,1.5,11,10.5,3.3,2.8,0,9,0,2,6.6)
y=x%*%beta+eps#%*%为矩阵乘法

其中部分元素为0。

b 划分数据为训练集和测试集

{r} 复制代码
#way1
train = sample(seq(1000), 100, replace = FALSE)
y.train = y[train,]
y.test = y[-train,]
x.train = x[train,]
x.test = x[-train,]
{r} 复制代码
#way2
train=sample(1:1000,100,rep=F)
test=(-train)

c 训练集MSE分析

{r} 复制代码
#way1
library(leaps)
regfit.full = regsubsets(y~., data=data.frame(x=x.train, y=y.train), nvmax=p)
val.errors = rep(NA, p)
x_cols = colnames(x, do.NULL=FALSE, prefix="x.")
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.train[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]
  val.errors[i] = mean((y.train - pred)^2)
}
plot(val.errors, ylab="Training MSE", pch=19, type="b")
{r} 复制代码
#way2
library(leaps)
d=data.frame(y,x)
fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
s1=summary(fit1)
mse=(s1$rss)/100
mse
which.min(mse)
plot(1:20,mse,type="b",xlab="number of predictors",ylab="traininng MSE")
{r} 复制代码
> d=data.frame(y,x)
> fit1=regsubsets(y~.,data=d,subset=train,nvmax=20)
> s1=summary(fit1)
> s1
Subset selection object
Call: regsubsets.formula(y ~ ., data = d, subset = train, nvmax = 20)
20 Variables  (and intercept)
    Forced in Forced out
X1      FALSE      FALSE
X2      FALSE      FALSE
X3      FALSE      FALSE
X4      FALSE      FALSE
X5      FALSE      FALSE
X6      FALSE      FALSE
X7      FALSE      FALSE
X8      FALSE      FALSE
X9      FALSE      FALSE
X10     FALSE      FALSE
X11     FALSE      FALSE
X12     FALSE      FALSE
X13     FALSE      FALSE
X14     FALSE      FALSE
X15     FALSE      FALSE
X16     FALSE      FALSE
X17     FALSE      FALSE
X18     FALSE      FALSE
X19     FALSE      FALSE
X20     FALSE      FALSE
1 subsets of each size up to 20
Selection Algorithm: exhaustive
          X1  X2  X3  X4  X5  X6  X7  X8  X9  X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
1  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " "
2  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " "*" " " " " " "
3  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " " "
4  ( 1 )  " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
5  ( 1 )  " " " " " " " " "*" " " " " " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
6  ( 1 )  " " " " " " " " "*" " " "*" " " " " " " " " "*" "*" " " " " " " "*" " " " " "*"
7  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" " " " " " " "*" " " " " "*"
8  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" " " " " "*" " " " " "*"
9  ( 1 )  " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " " " "*"
10  ( 1 ) " " " " " " " " "*" " " "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
11  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " " " "*" "*" "*" "*" " " "*" " " "*" "*"
12  ( 1 ) " " " " " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
13  ( 1 ) " " "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
14  ( 1 ) "*" "*" " " " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
15  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" " " "*" "*"
16  ( 1 ) "*" "*" " " " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
17  ( 1 ) "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
18  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" " " "*" "*" "*" "*"
19  ( 1 ) "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
20  ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

d 测试集MSE分析

{r} 复制代码
#way1
val.errors = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  pred = as.matrix(x.test[, x_cols %in% names(coefi)]) %*% coefi[names(coefi) %in% x_cols]#测试集的Y
  val.errors[i] = mean((y.test - pred)^2)#计算MSE
}
plot(val.errors, ylab="Test MSE", pch=19, type="b")
{r} 复制代码
#way2
xmat=model.matrix(y~.,data=d)
mse1=rep(NA,20)
for(i in 1:20){
  pred=xmat[test,][,names(coefficients(
    fit1,id=i))]%*%coefficients(fit1,id=i)
  mse1[i]=mean((pred-y[test])^2)
}
mse1
plot(1:20,mse1,type="b",xlab="model size",ylab="test MSE")


e 当模型含有多少个特征时,测试集MSE最小。

{r} 复制代码
#way1
which.min(val.errors)

16 parameter model has the smallest test MSE.

{r} 复制代码
#way2
which.min(mse1)

15 parameter model has the smallest test MSE.

f 测试集MSE最小的模型与真实模型比较起来有何不同,比较模型系数。

{r} 复制代码
#way1
coef(regfit.full, id=16)

Caught all but one zeroed out coefficient at x.2,x.4,x.10,x.19.

{r} 复制代码
#way2
coefficients(fit1,id=15)

Caught all but one zeroed out coefficient at x.3,x.4,x.8,x.10,x.16.

g 作出 r r r在一定范围内取值时 ∑ j = 1 p ( β j − β ^ j r ) 2 \sqrt{\sum_{j=1}^p\left(\beta_j-\hat{\beta}_j^r\right)^2} ∑j=1p(βj−β^jr)2 的图像,其中 β ^ j r \hat{\beta}_j^r β^jr为包含 r r r个预测变量的最优模型中第 j j j个系数的估计值。

{r} 复制代码
#way1
val.errors = rep(NA, p)
a = rep(NA, p)
b = rep(NA, p)
for (i in 1:p) {
  coefi = coef(regfit.full, id=i)
  a[i] = length(coefi)-1
  b[i] = sqrt(
    sum((B[x_cols %in% names(coefi)] - coefi[names(coefi) %in% x_cols])^2) +
      sum(B[!(x_cols %in% names(coefi))])^2)
}
plot(x=a, y=b, xlab="number of coefficients",
     ylab="error between estimated and true coefficients")
which.min(b)


Model with 9 coefficients (10 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 16 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

{r} 复制代码
#way2
xcol=colnames(x,do.NULL =F,prefix = "X")
s=rep(NA,20)
for(i in 1:20){
  s[i]=sqrt(sum(beta[xcol%in%names(coefficients(fit1,id=i)[-1])]-
                  coefficients(fit1,id=i)[-1])^2+
              sum(beta[!xcol%in%names(coefficients(fit1,id=i)[-1])])^2)
}

plot(1:20,s,type="b",xlab="numbers of coeffieients",
     ylab='error between estimated and true coefficients')
which.min(s)


Model with 15 coefficients (15 with intercept) minimizes the error between the

estimated and true coefficients. Test error is minimized with 15 parameter model.

A better fit of true coefficients as measured here doesn't mean the model will have.

相关推荐
wjs2024几秒前
《jEasyUI 树形网格添加分页》
开发语言
我是一只小青蛙888几秒前
C++核心过渡:类与对象精讲
开发语言·c++
鹿角片ljp2 分钟前
Java多线程编程:从基础到实战的完整指南
java·开发语言·后端
超级无敌大学霸7 分钟前
c语言算术转换及表达式解析
c语言·开发语言
努力学习的小廉12 分钟前
【QT(八)】—— 常用控件(五)
开发语言·qt
期待のcode12 分钟前
Java虚拟机的垃圾回收器
java·开发语言·jvm·算法
星火开发设计16 分钟前
C++ 分支结构:if-else 与 switch-case 的用法与区别
开发语言·c++·学习·算法·switch·知识·分支
qq_4061761419 分钟前
深耕JS防抖与节流:从原理到工程化实践的全方位指南
开发语言·php
2301_7973122623 分钟前
学习Java40天
java·开发语言·学习
Two_brushes.24 分钟前
C++ 常见特殊类的设计(含有单例模式)
开发语言·c++