3.线性神经网络

文章目录

3.1.线性回归

3.2.线性回归的从零开始实现

  1. 生成数据集迭代器:Python中,yield关键字用于定义一个生成器(generator)函数。生成器函数是一种特殊的函数,它允许你逐个生成值,而不是一次性返回一个完整的列表或集合。这样做的好处是可以节省内存,特别是在处理大量数据时,因为你可以按需生成数据,而不是一次性将所有数据加载到内存中。

    python 复制代码
    import random
    
    def data_iter(batch_size, features, labels):
        num_examples = len(features)
        indices = list(range(num_examples))
        # 这些样本是随机读取的,没有特定的顺序
        random.shuffle(indices)
        for i in range(0, num_examples, batch_size):
            batch_indices = torch.tensor(
                indices[i: min(i + batch_size, num_examples)])
            yield features[batch_indices], labels[batch_indices]
    
    batch_size = 10
    
    for X, y in data_iter(batch_size, features, labels):
        print(X, '\n', y)
        break

    由于yield的使用,data_iter函数不会一次性执行完毕并返回一个结果,而是每次调用时返回一个批次的数据,并在下次调用时从上次停止的地方继续执行。这使得函数能够按需生成数据批次,非常适合于迭代训练过程。

    使用生成器的好处之一是它们允许你以一种懒加载(lazy loading)的方式处理数据,即只在需要时才生成数据。这对于处理大型数据集或流数据特别有用,因为它可以显著减少内存的使用。

  2. 定义SDG优化算法

python 复制代码
def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

3.3.线性回归的简洁实现

  1. 读取纯数据形式的数据集

    python 复制代码
    import numpy as np
    import torch
    from torch.utils import data
    
    def load_array(data_arrays, batch_size, is_train=True):  #@save
        """构造一个PyTorch数据迭代器"""
        dataset = data.TensorDataset(*data_arrays)
        return data.DataLoader(dataset, batch_size, shuffle=is_train)
    
    batch_size = 10
    data_iter = load_array((features, labels), batch_size)
    
    # 使用iter构造Python迭代器,并使用next从迭代器中获取第一项
    next(iter(data_iter))

3.4.softmax回归

3.5.图像分类数据集

3.6.softmax回归的从零开始实现

  1. 实现 softmax 函数:

    python 复制代码
    def softmax(X):
        X_exp = torch.exp(X)
        partition = X_exp.sum(1, keepdim=True)
        return X_exp / partition  # 这里应用了广播机制
  2. 实现交叉熵损失函数:y_hat: (B, C) = (batch_size, class_num), y: (C,) 表示每个样本的真值类别

    python 复制代码
    def cross_entropy(y_hat, y):
        return - torch.log(y_hat[range(len(y_hat)), y])
    
    cross_entropy(y_hat, y)
  3. 计算预测时的分类精度

    python 复制代码
    def accuracy(y_hat, y):  #@save
        """计算预测正确的数量"""
        if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
            y_hat = y_hat.argmax(axis=1)
        cmp = y_hat.type(y.dtype) == y
        return float(cmp.type(y.dtype).sum())
    
    def evaluate_accuracy(net, data_iter):  #@save
        """计算在指定数据集上模型的精度"""
        if isinstance(net, torch.nn.Module):
            net.eval()  # 将模型设置为评估模式
        metric = Accumulator(2)  # 正确预测数、预测总数
        with torch.no_grad():
            for X, y in data_iter:
                metric.add(accuracy(net(X), y), y.numel())
        return metric[0] / metric[1]

3.7.softmax回归的简洁实现

  1. CrossEntropyLoss:传入 reduction 模式的不同,输出结果也不同(可能是张量,也可能是对张量求和之后的标量)

    python 复制代码
    loss = nn.CrossEntropyLoss(reduction='none')
相关推荐
视界先声27 分钟前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼29 分钟前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa
腾讯WeTest1 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c1 小时前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费1 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
温柔哥`2 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
强化学习与机器人控制仿真2 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心2 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客2 小时前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
Baihai_IDP2 小时前
分享一名海外独立开发者的 AI 编程工作流
人工智能·llm·ai编程