ComfyUI-unclip模型部署指南

一、介绍

unCLIP 模型是 SD 模型的版本,经过专门调整,除了文本提示之外,还可以接收图像概念作为输入。使用这些模型附带的 CLIPVision 对图像进行编码,然后在采样时将其提取的概念传递给主模型。

它并不是按照传统意义将图像混合在一起,而是实际上从两者中挑选了一些概念并制作了一个连贯的图像。

二、容器构建说明

本文档针对 ComfyUI 进行部署使用,因此在正式部署之前需要部署 ComfyUI

1. 部署 ComfyUI

(1)使用命令克隆 ComfyUI

复制代码
git clone https://github.com/comfyanonymous/ComfyUI.git
cd ComfyUI

(2)安装 conda(如已安装则跳过)

下面需要使用 Anaconda 或 Mimiconda 创建虚拟环境,可以输入 conda --version 进行检查。下面是 Mimiconda 的安装过程:

按 Enter 键查看许可证条款,阅读完毕后输入 yes 接受条款,安装完成后,脚本会询问是否初始化 conda 环境,输入 yes 并按 Enter 键。

  • 运行 source ~/.bashrc 命令激活 conda 环境
  • 再次输入 conda --version 命令来验证是否安装成功,如果出现类似 conda 4.10.3 这样的输出就成功了。

(3)创建虚拟环境

输入下面的命令:

复制代码
conda create -n comfyui python=3.10
conda activate comfyui

(4)安装 pytorch

复制代码
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121

(5)安装项目依赖

复制代码
pip install -r requirements.txt

此时所需环境就已经搭建完成,通过下面命令进行启动:

复制代码
python main.py

访问网址得到类似下图界面即表示成功启动:

2. 部署 unclip 模型

(1)下载 sd21-unclip-h 模型

访问 Hugging Face 搜索"stabilityai/stable-diffusion-2-1-unclip"下载下图的模型,也可以点击这里进入。首次访问该页面时,可能需要同意用户协议才能看到模型下载页。

(2)下载工作流

进入网站:unCLIP 模型示例 |ComfyUI_examples (comfyanonymous.github.io)并将下图下载,然后拖入 Comfy UI 中:

然后你的 ComfyUI 中应该会出选相应的工作流,类似下图:

至此unclip就可以实现了

相关推荐
Swaggy T5 小时前
自动驾驶控制算法——纯跟踪法(Pure Pursuit)
人工智能·机器学习·自动驾驶
聚客AI6 小时前
智能体协同作战:实现工具调用成功率提升47%的架构奥秘
人工智能·pytorch·机器学习·语言模型·自然语言处理·chatgpt·gpt-3
TS的美梦7 小时前
scanpy单细胞转录组python教程(二):单样本数据分析之数据质控
人工智能·python·数据分析·单细胞转录组·scanpy
星夜Zn7 小时前
Nature论文-预测和捕捉人类认知的基础模型-用大模型模拟人类认知
论文阅读·人工智能·大语言模型·nature·认知建模·统一认知模型
胡乱编胡乱赢8 小时前
联邦学习之------VT合谋
人工智能·深度学习·机器学习·vt合谋
数据与人工智能律师8 小时前
刑法视野下的虚拟财产属性争议:法律风险与市场潜力解析
大数据·网络·人工智能·云计算·区块链
dundunmm8 小时前
【论文阅读】Deep Adversarial Multi-view Clustering Network
论文阅读·人工智能·深度学习·聚类·对抗网络·多视图聚类·深度多视图聚类
墨风如雪8 小时前
声音即影像:昆仑万维SkyReels-A3如何叩响内容创作的革命前夜
aigc
HuggingFace10 小时前
欢迎 GPT OSS —— 来自 OpenAI 的全新开放模型家族!
人工智能
不焦躁的程序员10 小时前
AI时代人人都要懂的概念-深度学习
人工智能·深度学习·神经网络