POD-Transformer多变量回归预测(Matlab)

目录

效果一览







基本介绍

1.Matlab实现POD-Transformer多变量回归预测,本征正交分解数据降维融合Transformer多变量回归预测,使用SVD进行POD分解(本征正交分解);

2.运行环境Matlab2023b;

3.输入多个特征,输出单个变量,多变量回归预测;

4.data为数据集,excel数据,前多列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

本征正交分解,Proper orthogonal decomposition 缩写为POD,是一种用于提取离散数据特征信息的数学方法。POD 方法的目的是把多维随机过程进行低维近似描述并提取复杂随机过程的本质特征。其基本思想是将随机量分解为由其自身特征所确定的一组基函数来表示,基函数的确定原则为在每一次分解的过程中使得最低阶的模式上含能最多。


程序设计

  • 完整程序和数据获取方式:私信博主回复POD-Transformer多变量回归预测(Matlab)
python 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');


%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
阿杰学AI1 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
2301_818730565 小时前
transformer(上)
人工智能·深度学习·transformer
IT猿手6 小时前
基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
算法·matlab·机器人
阿杰学AI7 小时前
AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·transformer·自注意力机制
啊森要自信8 小时前
CANN runtime 深度解析:异构计算架构下运行时组件的性能保障与功能增强实现逻辑
深度学习·架构·transformer·cann
说私域8 小时前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
AI资源库9 小时前
nvidiapersonaplex-7b-v1模型深入解析
人工智能·语言模型·回归
fie888910 小时前
基于MATLAB的转子动力学建模与仿真实现(含碰摩、不平衡激励)
开发语言·算法·matlab
盼小辉丶10 小时前
Transformer实战——微调多语言Transformer模型
深度学习·语言模型·transformer
机器学习之心10 小时前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测