POD-Transformer多变量回归预测(Matlab)

目录

效果一览







基本介绍

1.Matlab实现POD-Transformer多变量回归预测,本征正交分解数据降维融合Transformer多变量回归预测,使用SVD进行POD分解(本征正交分解);

2.运行环境Matlab2023b;

3.输入多个特征,输出单个变量,多变量回归预测;

4.data为数据集,excel数据,前多列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

本征正交分解,Proper orthogonal decomposition 缩写为POD,是一种用于提取离散数据特征信息的数学方法。POD 方法的目的是把多维随机过程进行低维近似描述并提取复杂随机过程的本质特征。其基本思想是将随机量分解为由其自身特征所确定的一组基函数来表示,基函数的确定原则为在每一次分解的过程中使得最低阶的模式上含能最多。


程序设计

  • 完整程序和数据获取方式:私信博主回复POD-Transformer多变量回归预测(Matlab)
python 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');


%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
Matlab程序猿小助手5 小时前
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
开发语言·嵌入式硬件·算法·matlab·机器人·无人机
Just Jump9 小时前
机器翻译基础与模型 之三:基于自注意力的模型
自然语言处理·transformer·机器翻译
subject625Ruben12 小时前
随机森林(Random Forest, RF)筛选回归数据(处理异常值)
算法·随机森林·数学建模·回归
Matlab精灵15 小时前
使用MATLAB进行字符串处理
开发语言·matlab
cv君17 小时前
视频修复技术和实时在线处理
深度学习·音视频·transformer·视频修复
regret~1 天前
【论文笔记】LoFLAT: Local Feature Matching using Focused Linear Attention Transformer
论文阅读·深度学习·transformer
WangYan20221 天前
高光谱遥感是什么?高光谱遥感数据如何处理?(基于Matlab和Python多案例解析)从小白到精通
matlab·高光谱遥感数据处理·混合像元分解
迪菲赫尔曼2 天前
即插即用篇 | YOLOv11 引入高效的直方图Transformer模块 | 突破天气障碍:Histoformer引领高效图像修复新路径
人工智能·深度学习·yolo·目标检测·计算机视觉·transformer·注意力机制
Matlab精灵2 天前
利用Matlab函数实现深度学习算法
深度学习·算法·matlab