POD-Transformer多变量回归预测(Matlab)

目录

效果一览







基本介绍

1.Matlab实现POD-Transformer多变量回归预测,本征正交分解数据降维融合Transformer多变量回归预测,使用SVD进行POD分解(本征正交分解);

2.运行环境Matlab2023b;

3.输入多个特征,输出单个变量,多变量回归预测;

4.data为数据集,excel数据,前多列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

本征正交分解,Proper orthogonal decomposition 缩写为POD,是一种用于提取离散数据特征信息的数学方法。POD 方法的目的是把多维随机过程进行低维近似描述并提取复杂随机过程的本质特征。其基本思想是将随机量分解为由其自身特征所确定的一组基函数来表示,基函数的确定原则为在每一次分解的过程中使得最低阶的模式上含能最多。


程序设计

  • 完整程序和数据获取方式:私信博主回复POD-Transformer多变量回归预测(Matlab)
python 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('data.xlsx');


%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
freexyn10 小时前
Matlab自学笔记六十一:快速上手解方程
数据结构·笔记·matlab
ytttr87312 小时前
matlab通过Q学习算法解决房间路径规划问题
学习·算法·matlab
梦子要转行16 小时前
matlab/Simulink-全套50个汽车性能建模与仿真源码模型9
开发语言·matlab·汽车
寻丶幽风19 小时前
论文阅读笔记——VGGT: Visual Geometry Grounded Transformer
论文阅读·笔记·transformer·三维重建·3dgs·vggt
Zevalin爱灰灰19 小时前
MATLAB GUI界面设计 第六章——常用库中的其它组件
开发语言·ui·matlab
曹勖之10 天前
simuilink和ROS2数据联通,Run后一直卡在Initializting
windows·matlab·simulink·ros2
Zevalin爱灰灰11 天前
MATLAB GUI界面设计 第三章——仪器组件
开发语言·ui·matlab
suixinm11 天前
LSTM、GRU 与 Transformer网络模型参数计算
gru·lstm·transformer
不秃的卤蛋11 天前
回归任务与分类任务的区别
人工智能·分类·数据挖掘·回归
是纯一呀11 天前
融合LSTM与自注意力机制的多步光伏功率预测新模型解析
人工智能·lstm·transformer·预测