BERT的中文问答系统32

我们需要在现有的代码基础上增加网络搜索功能,并在大模型无法提供满意答案时调用网络搜索。以下是完整的代码和文件结构说明,我们创建一个完整的项目结构,包括多个文件和目录。这个项目将包含以下部分:

主文件 (main.py):包含GUI界面和模型加载、训练、评估等功能。

网络请求模块 (web_search.py):用于从互联网获取信息。

日志配置文件 (logging.conf):用于配置日志记录。

模型文件 (xihua_model.pth):训练好的模型权重文件。

数据文件 (train_data.jsonl, test_data.jsonl):训练和测试数据文件。

项目结构:包括上述文件和目录。

项目结构

lua 复制代码
project_root/
├── data/
│   ├── train_data.jsonl
│   └── test_data.jsonl
├── logs/
│   └── (log files will be generated here)
├── models/
│   └── xihua_model.pth
├── main.py
├── web_search.py
└── logging.conf

文件内容

main.py

python 复制代码
import os
import json
import jsonlines
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
import logging
from difflib import SequenceMatcher
from datetime import datetime
from web_search import search_web

# 获取项目根目录
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))

# 配置日志
LOGS_DIR = os.path.join(PROJECT_ROOT, 'logs')
os.makedirs(LOGS_DIR, exist_ok=True)

def setup_logging():
    log_file = os.path.join(LOGS_DIR, datetime.now().strftime('%Y-%m-%d_%H-%M-%S_羲和.txt'))
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_file),
            logging.StreamHandler()
        ]
    )

setup_logging()

# 数据集类
class XihuaDataset(Dataset):
    def __init__(self, file_path, tokenizer, max_length=128):
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.data = self.load_data(file_path)

    def load_data(self, file_path):
        data = []
        if file_path.endswith('.jsonl'):
            with jsonlines.open(file_path) as reader:
                for i, item in enumerate(reader):
                    try:
                        data.append(item)
                    except jsonlines.jsonlines.InvalidLineError as e:
                        logging.warning(f"跳过无效行 {i + 1}: {e}")
        elif file_path.endswith('.json'):
            with open(file_path, 'r') as f:
                try:
                    data = json.load(f)
                except json.JSONDecodeError as e:
                    logging.warning(f"跳过无效文件 {file_path}: {e}")
        return data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        question = item['question']
        human_answer = item['human_answers'][0]
        chatgpt_answer = item['chatgpt_answers'][0]

        try:
            inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            human_inputs = self.tokenizer(human_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            chatgpt_inputs = self.tokenizer(chatgpt_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
        except Exception as e:
            logging.warning(f"跳过无效项 {idx}: {e}")
            return self.__getitem__((idx + 1) % len(self.data))

        return {
            'input_ids': inputs['input_ids'].squeeze(),
            'attention_mask': inputs['attention_mask'].squeeze(),
            'human_input_ids': human_inputs['input_ids'].squeeze(),
            'human_attention_mask': human_inputs['attention_mask'].squeeze(),
            'chatgpt_input_ids': chatgpt_inputs['input_ids'].squeeze(),
            'chatgpt_attention_mask': chatgpt_inputs['attention_mask'].squeeze(),
            'human_answer': human_answer,
            'chatgpt_answer': chatgpt_answer
        }

# 获取数据加载器
def get_data_loader(file_path, tokenizer, batch_size=8, max_length=128):
    dataset = XihuaDataset(file_path, tokenizer, max_length)
    return DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 模型定义
class XihuaModel(torch.nn.Module):
    def __init__(self, pretrained_model_name='F:/models/bert-base-chinese'):
        super(XihuaModel, self).__init__()
        self.bert = BertModel.from_pretrained(pretrained_model_name)
        self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 1)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.pooler_output
        logits = self.classifier(pooled_output)
        return logits

# 训练函数
def train(model, data_loader, optimizer, criterion, device, progress_var=None):
    model.train()
    total_loss = 0.0
    num_batches = len(data_loader)
    for batch_idx, batch in enumerate(data_loader):
        try:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            human_input_ids = batch['human_input_ids'].to(device)
            human_attention_mask = batch['human_attention_mask'].to(device)
            chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)
            chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)

            optimizer.zero_grad()
            human_logits = model(human_input_ids, human_attention_mask)
            chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)

            human_labels = torch.ones(human_logits.size(0), 1).to(device)
            chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)

            loss = criterion(human_logits, human_labels) + criterion(chatgpt_logits, chatgpt_labels)
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            if progress_var:
                progress_var.set((batch_idx + 1) / num_batches * 100)
        except Exception as e:
            logging.warning(f"跳过无效批次: {e}")

    return total_loss / len(data_loader)

# 评估函数
def evaluate(model, data_loader, device):
    model.eval()
    correct_predictions = 0
    total_predictions = 0

    with torch.no_grad():
        for batch in data_loader:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            human_input_ids = batch['human_input_ids'].to(device)
            human_attention_mask = batch['human_attention_mask'].to(device)
            chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)
            chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)

            human_logits = model(human_input_ids, human_attention_mask)
            chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)

            human_labels = torch.ones(human_logits.size(0), 1).to(device)
            chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)

            human_preds = (torch.sigmoid(human_logits) > 0.5).float()
            chatgpt_preds = (torch.sigmoid(chatgpt_logits) > 0.5).float()

            correct_predictions += (human_preds == human_labels).sum().item()
            correct_predictions += (chatgpt_preds == chatgpt_labels).sum().item()
            total_predictions += human_labels.size(0) + chatgpt_labels.size(0)

    accuracy = correct_predictions / total_predictions
    return accuracy

# 主训练函数
def main_train(retrain=False):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    logging.info(f'Using device: {device}')

    tokenizer = BertTokenizer.from_pretrained('F:/models/bert-base-chinese')
    model = XihuaModel(pretrained_model_name='F:/models/bert-base-chinese').to(device)

    if retrain:
        model_path = os.path.join(PROJECT_ROOT, 'models/xihua_model.pth')
        if os.path.exists(model_path):
            model.load_state_dict(torch.load(model_path, map_location=device))
            logging.info("加载现有模型")
        else:
            logging.info("没有找到现有模型,将使用预训练模型")

    optimizer = optim.Adam(model.parameters(), lr=1e-5)
    criterion = torch.nn.BCEWithLogitsLoss()

    train_data_loader = get_data_loader(os.path.join(PROJECT_ROOT, 'data/train_data.jsonl'), tokenizer, batch_size=8, max_length=128)

    num_epochs = 30
    for epoch in range(num_epochs):
        train_loss = train(model, train_data_loader, optimizer, criterion, device)
        logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.8f}')

    torch.save(model.state_dict(), os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'))
    logging.info("模型训练完成并保存")

# GUI界面
class XihuaChatbotGUI:
    def __init__(self, root):
        self.root = root
        self.root.title("羲和聊天机器人")

        self.tokenizer = BertTokenizer.from_pretrained('F:/models/bert-base-chinese')
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model = XihuaModel(pretrained_model_name='F:/models/bert-base-chinese').to(self.device)
        self.load_model()
        self.model.eval()

        # 加载训练数据集以便在获取答案时使用
        self.data = self.load_data(os.path.join(PROJECT_ROOT, 'data/train_data.jsonl'))

        # 历史记录
        self.history = []

        self.create_widgets()

    def create_widgets(self):
        # 顶部框架
        top_frame = tk.Frame(self.root)
        top_frame.pack(pady=10)

        self.question_label = tk.Label(top_frame, text="问题:", font=("Arial", 12))
        self.question_label.grid(row=0, column=0, padx=10)

        self.question_entry = tk.Entry(top_frame, width=50, font=("Arial", 12))
        self.question_entry.grid(row=0, column=1, padx=10)

        self.answer_button = tk.Button(top_frame, text="获取回答", command=self.get_answer, font=("Arial", 12))
        self.answer_button.grid(row=0, column=2, padx=10)

        # 中部框架
        middle_frame = tk.Frame(self.root)
        middle_frame.pack(pady=10)

        self.answer_label = tk.Label(middle_frame, text="回答:", font=("Arial", 12))
        self.answer_label.grid(row=0, column=0, padx=10)

        self.answer_text = tk.Text(middle_frame, height=10, width=70, font=("Arial", 12))
        self.answer_text.grid(row=1, column=0, padx=10)

        # 底部框架
        bottom_frame = tk.Frame(self.root)
        bottom_frame.pack(pady=10)

        self.correct_button = tk.Button(bottom_frame, text="准确", command=self.mark_correct, font=("Arial", 12))
        self.correct_button.grid(row=0, column=0, padx=10)

        self.incorrect_button = tk.Button(bottom_frame, text="不准确", command=self.mark_incorrect, font=("Arial", 12))
        self.incorrect_button.grid(row=0, column=1, padx=10)

        self.train_button = tk.Button(bottom_frame, text="训练模型", command=self.train_model, font=("Arial", 12))
        self.train_button.grid(row=0, column=2, padx=10)

        self.retrain_button = tk.Button(bottom_frame, text="重新训练模型", command=lambda: self.train_model(retrain=True), font=("Arial", 12))
        self.retrain_button.grid(row=0, column=3, padx=10)

        self.progress_var = tk.DoubleVar()
        self.progress_bar = ttk.Progressbar(bottom_frame, variable=self.progress_var, maximum=100, length=200)
        self.progress_bar.grid(row=1, column=0, columnspan=4, pady=10)

        self.log_text = tk.Text(bottom_frame, height=10, width=70, font=("Arial", 12))
        self.log_text.grid(row=2, column=0, columnspan=4, pady=10)

        self.evaluate_button = tk.Button(bottom_frame, text="评估模型", command=self.evaluate_model, font=("Arial", 12))
        self.evaluate_button.grid(row=3, column=0, padx=10, pady=10)

        self.history_button = tk.Button(bottom_frame, text="查看历史记录", command=self.view_history, font=("Arial", 12))
        self.history_button.grid(row=3, column=1, padx=10, pady=10)

        self.save_history_button = tk.Button(bottom_frame, text="保存历史记录", command=self.save_history, font=("Arial", 12))
        self.save_history_button.grid(row=3, column=2, padx=10, pady=10)

    def get_answer(self):
        question = self.question_entry.get()
        if not question:
            messagebox.showwarning("输入错误", "请输入问题")
            return

        inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=128)
        with torch.no_grad():
            input_ids = inputs['input_ids'].to(self.device)
            attention_mask = inputs['attention_mask'].to(self.device)
            logits = self.model(input_ids, attention_mask)
        
        if logits.item() > 0:
            answer_type = "羲和回答"
        else:
            answer_type = "零回答"

        specific_answer = self.get_specific_answer(question, answer_type)

        if specific_answer == "这个我也不清楚,你问问零吧":
            specific_answer = search_web(question)

        self.answer_text.delete(1.0, tk.END)
        self.answer_text.insert(tk.END, f"{answer_type}\n{specific_answer}")

        # 添加到历史记录
        self.history.append({
            'question': question,
            'answer_type': answer_type,
            'specific_answer': specific_answer,
            'accuracy': None  # 初始状态为未评价
        })

    def get_specific_answer(self, question, answer_type):
        # 使用模糊匹配查找最相似的问题
        best_match = None
        best_ratio = 0.0
        for item in self.data:
            ratio = SequenceMatcher(None, question, item['question']).ratio()
            if ratio > best_ratio:
                best_ratio = ratio
                best_match = item

        if best_match:
            if answer_type == "羲和回答":
                return best_match['human_answers'][0]
            else:
                return best_match['chatgpt_answers'][0]
        return "这个我也不清楚,你问问零吧"

    def load_data(self, file_path):
        data = []
        if file_path.endswith('.jsonl'):
            with jsonlines.open(file_path) as reader:
                for i, item in enumerate(reader):
                    try:
                        data.append(item)
                    except jsonlines.jsonlines.InvalidLineError as e:
                        logging.warning(f"跳过无效行 {i + 1}: {e}")
        elif file_path.endswith('.json'):
            with open(file_path, 'r') as f:
                try:
                    data = json.load(f)
                except json.JSONDecodeError as e:
                    logging.warning(f"跳过无效文件 {file_path}: {e}")
        return data

    def load_model(self):
        model_path = os.path.join(PROJECT_ROOT, 'models/xihua_model.pth')
        if os.path.exists(model_path):
            self.model.load_state_dict(torch.load(model_path, map_location=self.device))
            logging.info("加载现有模型")
        else:
            logging.info("没有找到现有模型,将使用预训练模型")

    def train_model(self, retrain=False):
        file_path = filedialog.askopenfilename(filetypes=[("JSONL files", "*.jsonl"), ("JSON files", "*.json")])
        if not file_path:
            messagebox.showwarning("文件选择错误", "请选择一个有效的数据文件")
            return

        try:
            dataset = XihuaDataset(file_path, self.tokenizer)
            data_loader = DataLoader(dataset, batch_size=8, shuffle=True)
            
            # 加载已训练的模型权重
            if retrain:
                self.model.load_state_dict(torch.load(os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'), map_location=self.device))
                self.model.to(self.device)
                self.model.train()

            optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-5)
            criterion = torch.nn.BCEWithLogitsLoss()
            num_epochs = 30
            for epoch in range(num_epochs):
                train_loss = train(self.model, data_loader, optimizer, criterion, self.device, self.progress_var)
                logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}')
                self.log_text.insert(tk.END, f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}\n')
                self.log_text.see(tk.END)
            torch.save(self.model.state_dict(), os.path.join(PROJECT_ROOT, 'models/xihua_model.pth'))
            logging.info("模型训练完成并保存")
            self.log_text.insert(tk.END, "模型训练完成并保存\n")
            self.log_text.see(tk.END)
            messagebox.showinfo("训练完成", "模型训练完成并保存")
        except Exception as e:
            logging.error(f"模型训练失败: {e}")
            self.log_text.insert(tk.END, f"模型训练失败: {e}\n")
            self.log_text.see(tk.END)
            messagebox.showerror("训练失败", f"模型训练失败: {e}")

    def evaluate_model(self):
        test_data_loader = get_data_loader(os.path.join(PROJECT_ROOT, 'data/test_data.jsonl'), self.tokenizer, batch_size=8, max_length=128)
        accuracy = evaluate(self.model, test_data_loader, self.device)
        logging.info(f"模型评估准确率: {accuracy:.4f}")
        self.log_text.insert(tk.END, f"模型评估准确率: {accuracy:.4f}\n")
        self.log_text.see(tk.END)
        messagebox.showinfo("评估结果", f"模型评估准确率: {accuracy:.4f}")

    def mark_correct(self):
        if self.history:
            self.history[-1]['accuracy'] = True
            messagebox.showinfo("评价成功", "您认为这次回答是准确的")

    def mark_incorrect(self):
        if self.history:
            self.history[-1]['accuracy'] = False
            messagebox.showinfo("评价成功", "您认为这次回答是不准确的")

    def view_history(self):
        history_window = tk.Toplevel(self.root)
        history_window.title("历史记录")

        history_text = tk.Text(history_window, height=20, width=80, font=("Arial", 12))
        history_text.pack(padx=10, pady=10)

        for entry in self.history:
            history_text.insert(tk.END, f"问题: {entry['question']}\n")
            history_text.insert(tk.END, f"回答类型: {entry['answer_type']}\n")
            history_text.insert(tk.END, f"具体回答: {entry['specific_answer']}\n")
            if entry['accuracy'] is None:
                history_text.insert(tk.END, "评价: 未评价\n")
            elif entry['accuracy']:
                history_text.insert(tk.END, "评价: 准确\n")
            else:
                history_text.insert(tk.END, "评价: 不准确\n")
            history_text.insert(tk.END, "-" * 50 + "\n")

    def save_history(self):
        file_path = filedialog.asksaveasfilename(defaultextension=".json", filetypes=[("JSON files", "*.json")])
        if not file_path:
            return

        with open(file_path, 'w') as f:
            json.dump(self.history, f, ensure_ascii=False, indent=4)

        messagebox.showinfo("保存成功", "历史记录已保存到文件")

# 主函数
if __name__ == "__main__":
    # 启动GUI
    root = tk.Tk()
    app = XihuaChatbotGUI(root)
    root.mainloop()

web_search.py

python 复制代码
import requests
from bs4 import BeautifulSoup

def search_web(query):
    url = f"https://www.baidu.com/s?wd={query}"
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')

    results = []
    for result in soup.find_all('div', class_='c-container'):
        title = result.find('h3').get_text()
        snippet = result.find('div', class_='c-abstract')
        if snippet:
            snippet = snippet.get_text()
            results.append(f"{title}\n{snippet}\n")

    if results:
        return '\n'.join(results[:3])  # 返回前三个结果
    else:
        return "没有找到相关信息"

logging.conf

perl 复制代码
[loggers]
keys=root

[handlers]
keys=consoleHandler,fileHandler

[formatters]
keys=simpleFormatter

[logger_root]
level=INFO
handlers=consoleHandler,fileHandler

[handler_consoleHandler]
class=StreamHandler
level=INFO
formatter=simpleFormatter
args=(sys.stdout,)

[handler_fileHandler]
class=FileHandler
level=INFO
formatter=simpleFormatter
args=('logs/羲和.log', 'a')

[formatter_simpleFormatter]
format=%(asctime)s - %(levelname)s - %(message)s
datefmt=%Y-%m-%d %H:%M:%S

目录结构

php 复制代码
project_root/
├── data/
│   ├── train_data.jsonl
│   └── test_data.jsonl
├── logs/
│   └── (log files will be generated here)
├── models/
│   └── xihua_model.pth
├── main.py
├── web_search.py
└── logging.conf

说明

main.py:主文件,包含GUI界面和模型加载、训练、评估等功能。

web_search.py:用于从百度搜索信息的模块。

logging.conf:日志配置文件,用于配置日志记录。

data/:存放训练和测试数据文件。

logs/:存放日志文件。

models/:存放训练好的模型权重文件。

通过以上结构和代码,你可以实现一个具有GUI界面的聊天机器人,该机器人可以在本地使用训练好的模型回答问题,如果模型中没有相关内容,则会联网搜索并返回相关信息。

相关推荐
爱学测试的李木子几秒前
从0到1搭建 Android 自动化 python+appium 环境
android·软件测试·python·测试工具·自动化
Sherry Wangs3 分钟前
PromptGIP:Unifying lmage Processing as Visual Prompting Question Answering
人工智能·深度学习·图像增强·数字人技术·all-in-one
yzcxymz14 分钟前
关于python中的类属性和实例属性
python
wydxry18 分钟前
领域自适应
深度学习
小爬虫程序猿29 分钟前
如何利用Python爬虫精准获取苏宁易购商品详情
开发语言·爬虫·python
API快乐传递者30 分钟前
Python爬虫获取1688详情接口详细解析
开发语言·爬虫·python
m0_7482345242 分钟前
BERT模型入门(1)BERT的基本概念
人工智能·深度学习·bert
Json_1817901448043 分钟前
拍立淘按图搜索API接口需要遵循一定的步骤和注意事项
大数据·python·api
CodeClimb1 小时前
【华为OD-E卷-寻找密码 100分(python、java、c++、js、c)】
java·python·华为od
喵手1 小时前
Java 实现日志文件大小限制及管理——以 Python Logging 为启示
java·开发语言·python