get_dumines() 函数,用于将分类变量转换为哑变量

1. get_dummies() 函数的基本用法

get_dummies() 函数可以将DataFrame中的分类变量(通常是字符串类型)转换为哑变量,每个类别对应一个哑变量列,其中包含1和0的值,表示该类别是否出现。

python 复制代码
import pandas as pd

# 创建一个包含分类变量的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue'],
    'shape': ['circle', 'square', 'circle', 'triangle']
})

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

2. 处理缺失值

在使用 get_dummies() 之前,您需要决定如何处理DataFrame中的缺失值。以下是几种处理缺失值的方法:

  1. 删除包含缺失值的行

    如果数据集中的缺失值不多,可以选择删除这些行。

    python 复制代码
    df = df.dropna()
  2. 填充缺失值

    如果删除缺失值会导致数据量大幅减少,可以选择填充这些缺失值。填充策略可以是填充为最常见的值、中位数、众数或者一个特定的值。

    python 复制代码
    df['column'] = df['column'].fillna('missing')
  3. get_dummies() 中处理缺失值
    get_dummies() 函数允许您指定如何处理缺失值。例如,您可以将缺失值视为一个单独的类别。

    python 复制代码
    dummies = pd.get_dummies(df, columns=['color', 'shape'], dummy_na=True)

3. 示例代码

以下是一个完整的示例,展示了如何在处理缺失值后使用 get_dummies() 函数:

python 复制代码
import pandas as pd

# 创建一个包含缺失值的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', None, 'blue'],
    'shape': ['circle', 'square', 'circle', None]
})

# 填充缺失值
df['color'].fillna('unknown', inplace=True)
df['shape'].fillna('unknown', inplace=True)

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

输出结果:

sql 复制代码
   color_blue  color_red  color_unknown  shape_circle  shape_square  shape_unknown
0           0         1              0            1            0             0
1           1         0              0            0            1             0
2           0         0              1            1            0             0
3           1         0              0            0            0             1

在这个结果中:

color_blue、color_red 和 color_unknown 是从 color 列生成的哑变量列,分别表示颜色为蓝色、红色和未知的颜色。

shape_circle、shape_square 和 shape_unknown 是从 shape 列生成的哑变量列,分别表示形状为圆形、正方形和未知的形状。

每一列中的1表示对应的类别在该行中出现,0表示没有出现。这样,您就可以使用这些哑变量进行进一步的数据分析或机器学习建模了。

在这个示例中,我们首先填充了缺失值,然后使用 get_dummies() 函数将分类变量转换为哑变量。这样可以确保在转换过程中不会丢失任何信息。希望这次的解释更加清晰,并且能够帮助您正确使用 get_dummies() 函数。

将分类标签转换为模型可以处理的数值格式

相关推荐
格林威6 分钟前
可见光工业相机半导体制造领域中的应用
图像处理·人工智能·数码相机·计算机视觉·视觉检测·制造·工业相机
星期天要睡觉13 分钟前
计算机视觉(opencv)——基于 MediaPipe 人体姿态检测
人工智能·opencv·计算机视觉
资讯全球29 分钟前
2025机器人自动化打磨抛光设备及汽车零件打磨新技术10月应用解析
人工智能·机器人·自动化
数智前线29 分钟前
京东零售的AI野心:为每个商家打造自己的“AI战队”
人工智能
Cl_rown去掉l变成C31 分钟前
第N7周打卡:调用Gensim库训练Word2Vec模型
人工智能·自然语言处理·word2vec
腾讯云开发者1 小时前
腾讯云TVP走进美的,共探智能制造新范式
人工智能
一水鉴天1 小时前
整体设计 逻辑系统程序 之34七层网络的中台架构设计及链路对应讨论(含 CFR 规则与理 / 事代理界定)
人工智能·算法·公共逻辑
我星期八休息2 小时前
C++智能指针全面解析:原理、使用场景与最佳实践
java·大数据·开发语言·jvm·c++·人工智能·python
ECT-OS-JiuHuaShan2 小时前
《元推理框架技术白皮书》,人工智能领域的“杂交水稻“
人工智能·aigc·学习方法·量子计算·空间计算
minhuan2 小时前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging