get_dumines() 函数,用于将分类变量转换为哑变量

1. get_dummies() 函数的基本用法

get_dummies() 函数可以将DataFrame中的分类变量(通常是字符串类型)转换为哑变量,每个类别对应一个哑变量列,其中包含1和0的值,表示该类别是否出现。

python 复制代码
import pandas as pd

# 创建一个包含分类变量的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue'],
    'shape': ['circle', 'square', 'circle', 'triangle']
})

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

2. 处理缺失值

在使用 get_dummies() 之前,您需要决定如何处理DataFrame中的缺失值。以下是几种处理缺失值的方法:

  1. 删除包含缺失值的行

    如果数据集中的缺失值不多,可以选择删除这些行。

    python 复制代码
    df = df.dropna()
  2. 填充缺失值

    如果删除缺失值会导致数据量大幅减少,可以选择填充这些缺失值。填充策略可以是填充为最常见的值、中位数、众数或者一个特定的值。

    python 复制代码
    df['column'] = df['column'].fillna('missing')
  3. get_dummies() 中处理缺失值
    get_dummies() 函数允许您指定如何处理缺失值。例如,您可以将缺失值视为一个单独的类别。

    python 复制代码
    dummies = pd.get_dummies(df, columns=['color', 'shape'], dummy_na=True)

3. 示例代码

以下是一个完整的示例,展示了如何在处理缺失值后使用 get_dummies() 函数:

python 复制代码
import pandas as pd

# 创建一个包含缺失值的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', None, 'blue'],
    'shape': ['circle', 'square', 'circle', None]
})

# 填充缺失值
df['color'].fillna('unknown', inplace=True)
df['shape'].fillna('unknown', inplace=True)

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

输出结果:

sql 复制代码
   color_blue  color_red  color_unknown  shape_circle  shape_square  shape_unknown
0           0         1              0            1            0             0
1           1         0              0            0            1             0
2           0         0              1            1            0             0
3           1         0              0            0            0             1

在这个结果中:

color_blue、color_red 和 color_unknown 是从 color 列生成的哑变量列,分别表示颜色为蓝色、红色和未知的颜色。

shape_circle、shape_square 和 shape_unknown 是从 shape 列生成的哑变量列,分别表示形状为圆形、正方形和未知的形状。

每一列中的1表示对应的类别在该行中出现,0表示没有出现。这样,您就可以使用这些哑变量进行进一步的数据分析或机器学习建模了。

在这个示例中,我们首先填充了缺失值,然后使用 get_dummies() 函数将分类变量转换为哑变量。这样可以确保在转换过程中不会丢失任何信息。希望这次的解释更加清晰,并且能够帮助您正确使用 get_dummies() 函数。

将分类标签转换为模型可以处理的数值格式

相关推荐
红衣小蛇妖23 分钟前
神经网络-Day44
人工智能·深度学习·神经网络
忠于明白23 分钟前
Spring AI 核心工作流
人工智能·spring·大模型应用开发·spring ai·ai 应用商业化
大写-凌祁1 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号1 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM1 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
IT_陈寒1 小时前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端
jndingxin1 小时前
OpenCV CUDA模块图像处理------创建一个模板匹配(Template Matching)对象函数createTemplateMatching()
图像处理·人工智能·opencv
盛寒2 小时前
N元语言模型 —— 一文讲懂!!!
人工智能·语言模型·自然语言处理
weixin_177297220692 小时前
家政小程序开发——AI+IoT技术融合,打造“智慧家政”新物种
人工智能·物联网
Jay Kay2 小时前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归