get_dumines() 函数,用于将分类变量转换为哑变量

1. get_dummies() 函数的基本用法

get_dummies() 函数可以将DataFrame中的分类变量(通常是字符串类型)转换为哑变量,每个类别对应一个哑变量列,其中包含1和0的值,表示该类别是否出现。

python 复制代码
import pandas as pd

# 创建一个包含分类变量的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue'],
    'shape': ['circle', 'square', 'circle', 'triangle']
})

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

2. 处理缺失值

在使用 get_dummies() 之前,您需要决定如何处理DataFrame中的缺失值。以下是几种处理缺失值的方法:

  1. 删除包含缺失值的行

    如果数据集中的缺失值不多,可以选择删除这些行。

    python 复制代码
    df = df.dropna()
  2. 填充缺失值

    如果删除缺失值会导致数据量大幅减少,可以选择填充这些缺失值。填充策略可以是填充为最常见的值、中位数、众数或者一个特定的值。

    python 复制代码
    df['column'] = df['column'].fillna('missing')
  3. get_dummies() 中处理缺失值
    get_dummies() 函数允许您指定如何处理缺失值。例如,您可以将缺失值视为一个单独的类别。

    python 复制代码
    dummies = pd.get_dummies(df, columns=['color', 'shape'], dummy_na=True)

3. 示例代码

以下是一个完整的示例,展示了如何在处理缺失值后使用 get_dummies() 函数:

python 复制代码
import pandas as pd

# 创建一个包含缺失值的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', None, 'blue'],
    'shape': ['circle', 'square', 'circle', None]
})

# 填充缺失值
df['color'].fillna('unknown', inplace=True)
df['shape'].fillna('unknown', inplace=True)

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

输出结果:

sql 复制代码
   color_blue  color_red  color_unknown  shape_circle  shape_square  shape_unknown
0           0         1              0            1            0             0
1           1         0              0            0            1             0
2           0         0              1            1            0             0
3           1         0              0            0            0             1

在这个结果中:

color_blue、color_red 和 color_unknown 是从 color 列生成的哑变量列,分别表示颜色为蓝色、红色和未知的颜色。

shape_circle、shape_square 和 shape_unknown 是从 shape 列生成的哑变量列,分别表示形状为圆形、正方形和未知的形状。

每一列中的1表示对应的类别在该行中出现,0表示没有出现。这样,您就可以使用这些哑变量进行进一步的数据分析或机器学习建模了。

在这个示例中,我们首先填充了缺失值,然后使用 get_dummies() 函数将分类变量转换为哑变量。这样可以确保在转换过程中不会丢失任何信息。希望这次的解释更加清晰,并且能够帮助您正确使用 get_dummies() 函数。

将分类标签转换为模型可以处理的数值格式

相关推荐
新加坡内哥谈技术2 分钟前
OpenAI 因 Google 逼近而宣布“红色警戒”
人工智能
咚咚王者3 分钟前
人工智能之数据分析 Pandas:第三章 DataFrame
人工智能·数据分析·pandas
明月(Alioo)3 分钟前
机器学习入门,微积分之导数概念
人工智能·机器学习
薛定e的猫咪3 分钟前
中国版 ReadmeX + 海外爆款 Zread.ai:两款 AI 工具重构开源项目探索方式,一键解析GitHub项目,生成超详细技术文档。
人工智能·重构·开源
跨境摸鱼5 分钟前
AI 赋能!亚马逊竞争情报的“重构式”升级,破解竞品迷局
人工智能·矩阵·重构·跨境电商·亚马逊·防关联
AI即插即用16 分钟前
即插即用系列 | CVPR 2024 ABC-Attention:基于双线性相关注意力的红外小目标检测
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测
AI即插即用17 分钟前
即插即用系列 | WACV 2025 SvANet:专为极小目标(<1%)设计的尺度变化注意力网络,医学图像分割新SOTA!
人工智能·深度学习·神经网络·目标检测·计算机视觉·cnn·视觉检测
秋邱21 分钟前
AR + 离线 AI 实战:YOLOv9+TensorFlow Lite 实现移动端垃圾分类识别
开发语言·前端·数据库·人工智能·python·html
Sheffi6632 分钟前
大语言模型 (LLM) 在 App 中的集成方式
人工智能·语言模型·自然语言处理
Swift社区32 分钟前
在 Swift 中使用 Image Playground 生成 AI 图像:完整实战指南
开发语言·人工智能·swift