get_dumines() 函数,用于将分类变量转换为哑变量

1. get_dummies() 函数的基本用法

get_dummies() 函数可以将DataFrame中的分类变量(通常是字符串类型)转换为哑变量,每个类别对应一个哑变量列,其中包含1和0的值,表示该类别是否出现。

python 复制代码
import pandas as pd

# 创建一个包含分类变量的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', 'green', 'blue'],
    'shape': ['circle', 'square', 'circle', 'triangle']
})

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

2. 处理缺失值

在使用 get_dummies() 之前,您需要决定如何处理DataFrame中的缺失值。以下是几种处理缺失值的方法:

  1. 删除包含缺失值的行

    如果数据集中的缺失值不多,可以选择删除这些行。

    python 复制代码
    df = df.dropna()
  2. 填充缺失值

    如果删除缺失值会导致数据量大幅减少,可以选择填充这些缺失值。填充策略可以是填充为最常见的值、中位数、众数或者一个特定的值。

    python 复制代码
    df['column'] = df['column'].fillna('missing')
  3. get_dummies() 中处理缺失值
    get_dummies() 函数允许您指定如何处理缺失值。例如,您可以将缺失值视为一个单独的类别。

    python 复制代码
    dummies = pd.get_dummies(df, columns=['color', 'shape'], dummy_na=True)

3. 示例代码

以下是一个完整的示例,展示了如何在处理缺失值后使用 get_dummies() 函数:

python 复制代码
import pandas as pd

# 创建一个包含缺失值的DataFrame
df = pd.DataFrame({
    'color': ['red', 'blue', None, 'blue'],
    'shape': ['circle', 'square', 'circle', None]
})

# 填充缺失值
df['color'].fillna('unknown', inplace=True)
df['shape'].fillna('unknown', inplace=True)

# 使用get_dummies()转换分类变量
dummies = pd.get_dummies(df, columns=['color', 'shape'])
print(dummies)

输出结果:

sql 复制代码
   color_blue  color_red  color_unknown  shape_circle  shape_square  shape_unknown
0           0         1              0            1            0             0
1           1         0              0            0            1             0
2           0         0              1            1            0             0
3           1         0              0            0            0             1

在这个结果中:

color_blue、color_red 和 color_unknown 是从 color 列生成的哑变量列,分别表示颜色为蓝色、红色和未知的颜色。

shape_circle、shape_square 和 shape_unknown 是从 shape 列生成的哑变量列,分别表示形状为圆形、正方形和未知的形状。

每一列中的1表示对应的类别在该行中出现,0表示没有出现。这样,您就可以使用这些哑变量进行进一步的数据分析或机器学习建模了。

在这个示例中,我们首先填充了缺失值,然后使用 get_dummies() 函数将分类变量转换为哑变量。这样可以确保在转换过程中不会丢失任何信息。希望这次的解释更加清晰,并且能够帮助您正确使用 get_dummies() 函数。

将分类标签转换为模型可以处理的数值格式

相关推荐
掘金一周32 分钟前
金石焕新程 >> 瓜分万元现金大奖征文活动即将回归 | 掘金一周 4.3
前端·人工智能·后端
白雪讲堂1 小时前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
斯汤雷1 小时前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
ejinxian1 小时前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring
葡萄成熟时_1 小时前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
机器之心1 小时前
一篇论文,看见百度广告推荐系统在大模型时代的革新
人工智能
机器之心1 小时前
视觉SSL终于追上了CLIP!Yann LeCun、谢赛宁等新作,逆转VQA任务固有认知
人工智能
赣州云智科技的技术铺子2 小时前
【一步步开发AI运动APP】六、运动计时计数能调用
人工智能·程序员