基于 CMAC(神经网络)与 PID 的并行控制

基于 CMAC(Cerebellar Model Articulation Controller)神经网络与 PID 的并行控制 是一种结合传统 PID 控制与 CMAC 神经网络智能控制的方法。通过两种控制方式的优势互补,适应复杂系统的非线性动态特性,同时确保控制的稳定性和快速性。

原理分析

  1. PID 控制器

    • 提供系统的基础控制,主要针对线性或简单的非线性系统,通过比例、积分和微分控制补偿误差。
    • 对系统响应中的低频成分效果较好,但在强非线性或时变系统中性能可能受到限制。
  2. CMAC 神经网络

    • 模拟小脑功能,具有学习速度快、存储效率高的特点,适用于非线性、时变系统建模。
    • 作为补偿控制器,用于处理系统中的复杂非线性成分和高频扰动。
  3. 并行控制结构

    • 并行模型将 PID 控制器和 CMAC 神经网络控制器输出叠加。
    • PID 控制器负责主控制,CMAC 控制器通过学习动态特性提供误差补偿。

C++ 实现

以下为一个简化的基于 CMAC 与 PID 并行控制的离散系统实现代码:

cpp 复制代码
#include <iostream>
#include <vector>
#include <cmath>

class CMAC {
private:
    int input_size;
    int memory_size;
    double learning_rate;
    std::vector<double> memory;

public:
    CMAC(int input_size, int memory_size, double learning_rate = 0.01)
        : input_size(input_size), memory_size(memory_size), learning_rate(learning_rate) {
        memory.resize(memory_size, 0.0);  // 初始化存储为 0
    }

    double compute(const std::vector<double>& inputs) {
        // 简化的 CMAC 映射
        int index = static_cast<int>(inputs[0] * (memory_size - 1));  // 映射到存储索引
        return memory[index];
    }

    void update(const std::vector<double>& inputs, double error) {
        int index = static_cast<int>(inputs[0] * (memory_size - 1));
        memory[index] += learning_rate * error;  // 学习误差,更新存储值
    }
};

class ParallelPIDCMACController {
private:
    double Kp, Ki, Kd;
    CMAC cmac;
    double alpha;  // 权重

public:
    ParallelPIDCMACController(double Kp, double Ki, double Kd, double alpha, int cmac_memory_size)
        : Kp(Kp), Ki(Ki), Kd(Kd), alpha(alpha), cmac(1, cmac_memory_size) {}

    double compute(double setpoint, double actual, double dt) {
        static double integral = 0.0;
        static double prev_error = 0.0;

        // 计算误差
        double error = setpoint - actual;
        integral += error * dt;
        double derivative = (error - prev_error) / dt;

        // PID 控制信号
        double u_pid = Kp * error + Ki * integral + Kd * derivative;

        // CMAC 控制信号
        std::vector<double> inputs = { error };
        double u_cmac = cmac.compute(inputs);

        // 综合控制信号
        double u = alpha * u_pid + (1 - alpha) * u_cmac;

        // 更新 CMAC
        cmac.update(inputs, error);

        prev_error = error;
        return u;
    }
};

int main() {
    ParallelPIDCMACController controller(1.0, 0.5, 0.1, 0.7, 100);
    double setpoint = 1.0;  // 目标值
    double actual = 0.0;    // 实际值
    double dt = 0.1;        // 时间步长

    for (int step = 0; step < 100; ++step) {
        double control_signal = controller.compute(setpoint, actual, dt);
        actual += control_signal * 0.1;  // 简化的被控对象模型
        std::cout << "Step: " << step
                  << ", Control Signal: " << control_signal
                  << ", Actual Output: " << actual
                  << std::endl;
    }

    return 0;
}

特点与优势

  1. 快速学习能力

    • CMAC 学习速度快,适合动态调整系统控制策略。
  2. 非线性补偿

    • PID 控制器提供基础控制,CMAC 补偿非线性特性,提高系统适应性。
  3. 稳定性与灵活性

    • PID 确保控制稳定性,CMAC 提供灵活的补偿策略。

总结

基于 CMAC 与 PID 的并行控制通过两种方法的优势互补,可适应复杂、非线性系统。该方法在工业控制、机器人控制等场景中表现出色,尤其是在系统动态特性较强的情况下,有助于提高控制性能和响应速度。

相关推荐
2501_9307992427 分钟前
访答知识库#Pdf转word#人工智能#Al编辑器#访答RAG#企业知识库私,私有知识库,访答编辑器,个人知识库,云知识库,……
人工智能
学好statistics和DS1 小时前
【CV】神经网络中哪些参数需要被学习?
人工智能·神经网络·学习
大千AI助手1 小时前
机器学习特征筛选中的IV值详解:原理、应用与实现
人工智能·机器学习·kl散度·roc·iv·信息值·woe
姜—姜1 小时前
通过构建神经网络实现项目预测
人工智能·pytorch·深度学习·神经网络
Ro Jace2 小时前
模式识别与机器学习课程笔记(4):线性判决函数
人工智能·笔记·机器学习
科研小白_2 小时前
基于遗传算法优化BP神经网络(GA-BP)的数据时序预测
人工智能·算法·回归
互联网江湖3 小时前
蓝桥杯出局,少儿编程的价值祛魅时刻?
人工智能·生活
Elastic 中国社区官方博客3 小时前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
paid槮4 小时前
OpenCV图像形态学详解
人工智能·opencv·计算机视觉
点控云5 小时前
点控云智能短信:重构企业与用户的连接,让品牌沟通更高效
大数据·人工智能·科技·重构·外呼系统·呼叫中心