昇思MindSpore第四课---GPT实现情感分类

1. GPT的概念

GPT 系列是 OpenAI 的一系列预训练模型,GPT 的全称是 Generative Pre-Trained Transformer,顾名思义,GPT 的目标是通过Transformer,使用预训练技术得到通用的语言模型。和BERT类似,GPT-1同样采取pre-train +fine-tune的思路:先基于大量未标注语料数据进行预训练,后基于少量标注数据进行微调。

2 实践

2.1 配置环境

安装`mindnlp 套件

2.2 任务训练

OpenAIGPTForSequenceClassification的一些权重没有从openai-gpt的模型检查点初始化,而是重新初始化。

2.3 训练完成

3. 感悟

GPT也是输入句子或者句子对的,并且GPT添加了special tokens。GPT是由Decoder Layer堆叠,Decoder Layer的组成与Transformer Decoder Layer是相似的,不过是没有计算Encode输出与Decoder输入之间的注意力分数multi-head attention的。

相对于BERT,GPT更加注重语句的生成,也就是根据签名的内容预测下一个词是什么。也就是说,GPT更适合生成式的下游任务。

经过这一节课,对于Transformer、BERT以及GPT的理解更加的深刻,对于生成式的大模型有了一个比较直观的认识,对于大模型是如何理解人类语言的方法有了一个初步的认识。而且对模型的微调等概念与方法也有了一个直观地认识。

相关推荐
Blossom.1181 小时前
基于深度学习的图像分类:使用Capsule Networks实现高效分类
人工智能·python·深度学习·神经网络·机器学习·分类·数据挖掘
Re_Yang094 小时前
数学专业转型数据分析竞争力发展报告
数据挖掘·数据分析
workflower4 小时前
数据分析前景
算法·数据挖掘·数据分析·需求分析·软件需求
go54631584657 小时前
Python点阵字生成与优化:从基础实现到高级渲染技术
开发语言·人工智能·python·深度学习·分类·数据挖掘
简简单单做算法12 小时前
基于LSTM深度学习网络的视频类型分类算法matlab仿真
深度学习·matlab·分类·lstm·视频类型分类
pk_xz12345619 小时前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建
优宁维生物1 天前
血液样本的分类与应用
人工智能·分类·数据挖掘
Blossom.1181 天前
基于深度学习的图像分类:使用DenseNet实现高效分类
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·迁移学习
天若有情6731 天前
【技术新闻】OpenAI发布GPT-5,AI编程助手迎来革命性突破
gpt·ai编程·业界资讯·新闻资讯
Watermelo6171 天前
极致的灵活度满足工程美学:用Vue Flow绘制一个完美流程图
前端·javascript·vue.js·数据挖掘·数据分析·流程图·数据可视化