java-图算法

1. 最短路径算法

迪杰斯特拉算法(Dijkstra's Algorithm)

描述

迪杰斯特拉算法是一种用于在加权图中找到单个源点到所有其他顶点的最短路径的算法。它适用于有向图和无向图,且边的权重必须为非负数。

Java案例

java 复制代码
import java.util.Arrays;

public class DijkstraAlgorithm {
    public static void dijkstra(int[][] graph, int src) {
        int V = graph.length;
        int[] dist = new int[V];
        Arrays.fill(dist, Integer.MAX_VALUE);
        boolean[] sptSet = new boolean[V];

        dist[src] = 0;

        for (int count = 0; count < V - 1; count++) {
            int u = minDistance(dist, sptSet, V);
            sptSet[u] = true;

            for (int v = 0; v < V; v++)
                if (!sptSet[v] && graph[u][v] != 0 && dist[u] != Integer.MAX_VALUE && dist[u] + graph[u][v] < dist[v])
                    dist[v] = dist[u] + graph[u][v];
        }

        printSolution(dist);
    }

    private static int minDistance(int[] dist, boolean[] sptSet, int V) {
        int min = Integer.MAX_VALUE, minIndex = -1;

        for (int v = 0; v < V; v++)
            if (!sptSet[v] && dist[v] <= min)
                min = dist[v], minIndex = v;

        return minIndex;
    }

    private static void printSolution(int[] dist) {
        System.out.println("Vertex \t Distance from Source");
        for (int i = 0; i < dist.length; i++)
            System.out.println(i + " \t\t " + dist[i]);
    }

    public static void main(String[] args) {
        int[][] graph = {
            {0, 4, 0, 0, 0, 0, 0, 8, 0},
            {4, 0, 8, 0, 0, 0, 0, 11, 0},
            {0, 8, 0, 7, 0, 4, 0, 0, 2},
            {0, 0, 7, 0, 9, 14, 0, 0, 0},
            {0, 0, 0, 9, 0, 10, 0, 0, 0},
            {0, 0, 4, 14, 10, 0, 2, 0, 0},
            {0, 0, 0, 0, 0, 2, 0, 1, 6},
            {8, 11, 0, 0, 0, 0, 1, 0, 7},
            {0, 0, 2, 0, 0, 0, 6, 7, 0}
        };
        dijkstra(graph, 0);
    }
}
弗洛伊德算法(Floyd-Warshall Algorithm)

描述

弗洛伊德算法用于在加权图中找到所有顶点对之间的最短路径。它可以处理正权边和负权边,但不能处理负权环。

Java案例

java 复制代码
public class FloydWarshallAlgorithm {
    public static void floydWarshallAlgorithm(int[][] graph) {
        int V = graph.length;
        int[][] dist = new int[V][V];
        boolean[][] isShortestPath = new boolean[V][V];

        for (int i = 0; i < V; i++)
            for (int j = 0; j < V; j++)
                dist[i][j] = graph[i][j];

        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                for (int j = 0; j < V; j++) {
                    if (dist[i][k] != Integer.MAX_VALUE && dist[k][j] != Integer.MAX_VALUE
                            && dist[i][j] > dist[i][k] + dist[k][j]) {
                        dist[i][j] = dist[i][k] + dist[k][j];
                        isShortestPath[i][j] = false;
                    } else if (dist[i][k] != Integer.MAX_VALUE && dist[k][j] != Integer.MAX_VALUE
                            && dist[i][j] == dist[i][k] + dist[k][j]) {
                        isShortestPath[i][j] = true;
                    }
                }
            }
        }

        printSolution(dist);
    }

    private static void printSolution(int[][] dist) {
        System.out.println("The following matrix shows the shortest distances between every pair of vertices:");
        for (int i = 0; i < dist.length; i++) {
            for (int j = 0; j < dist[i].length; j++) {
                if (dist[i][j] == Integer.MAX_VALUE)
                    System.out.print("\u221e ");
                else
                    System.out.print(dist[i][j] + "   ");
            }
            System.out.println();
        }
    }

    public static void main(String[] args) {
        int[][] graph = {
            {0, 5, 0, 0, 0, 0, 0, 8, 0},
            {5, 0, 10, 0, 0, 0, 0, 3, 0},
            {0, 10, 0, 15, 0, 0, 0, 0, 2},
            {0, 0, 15, 0, 6, 0, 0, 0, 0},
            {0, 0, 0, 6, 0, 9, 0, 0, 0},
            {0, 0, 0, 0, 9, 0, 7, 0, 0},
            {0, 0, 0, 0, 0, 7, 0, 4, 0},
            {8, 3, 0, 0, 0, 0, 4, 0, 2},
            {0, 0, 2, 0, 0, 0, 0, 2, 0}
        };
        floydWarshallAlgorithm(graph);
    }
}

2. 最小生成树算法

普里姆算法(Prim's Algorithm)

描述

普里姆算法是一种贪心算法,用于在加权连通图中找到最小生成树。它从一个任意顶点开始,逐渐增加树中的顶点,直到包含所有顶点。

Java案例

java 复制代码
import java.util.Arrays;

public class PrimsAlgorithm {
    public static void primsAlgorithm(int[][] graph) {
        int V = graph.length;
        int[] parent = new int[V];
        int[] minHeap = new int[V];
        Arrays.fill(minHeap, Integer.MAX_VALUE);
        boolean[] added = new boolean[V];

        minHeap[0] = 0;
        parent[0] = -1;

        for (int i = 0; i < V - 1; i++) {
            int u = minHeap[0];
            added[u] = true;

            for (int v = 0; v < V; v++) {
                if (graph[u][v] != 0 && !added[v] && graph[u][v] < minHeap[v]) {
                    minHeap[v] = graph[u][v];
                    parent[v] = u;
                }
            }

            for (int v = 0; v < V; v++) {
                if (!added[v] && minHeap[v] < minHeap[0]) {
                    minHeap[0] = minHeap[v];
                }
            }
        }

        printMST(parent);
    }

    private static void printMST(int[] parent) {
        System.out.println("Edge \t Weight");
        for (int i = 1; i < parent.length; i++)
            System.out.println(parent[i] + " - " + i + "\t" + 1);
    }

    public static void main(String[] args) {
        int[][] graph = {
            {0, 2, 0, 6, 0},
            {2, 0, 3, 8, 5},
            {0, 3, 0, 0, 7},
            {6, 8, 0, 0, 9},
            {0, 5, 7, 9, 0}
        };
        primsAlgorithm(graph);
    }
}
克鲁斯卡尔算法(Kruskal's Algorithm)

描述

克鲁斯卡尔算法也是一种贪心算法,用于在加权连通图中找到最小生成树。它按边的权重递增顺序考虑边,如果加入这条

相关推荐
独好紫罗兰7 分钟前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空43 分钟前
Android学习总结之算法篇四(字符串)
android·学习·算法
天天向上杰1 小时前
面基JavaEE银行金融业务逻辑层处理金融数据类型BigDecimal
java·bigdecimal
闪电麦坤951 小时前
C#:base 关键字
开发语言·c#
Mason Lin1 小时前
2025年3月29日(matlab -ss -lti)
开发语言·matlab
请来次降维打击!!!1 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
用键盘当武器的秋刀鱼1 小时前
springBoot统一响应类型3.5.1版本
java·spring boot·后端
qystca1 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL2 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体
DREAM.ZL2 小时前
基于python的电影数据分析及可视化系统
开发语言·python·数据分析