子矩阵的和(矩阵前缀和)

题目链接:用户登录 - C语言网

在这里可以模拟一下就知道了,

记录每个 (0,0) 到 (i,j)的矩阵和

然后区间子矩阵的和,就减去多余的部分的矩阵和就可以得到了 子矩阵的和

然后 这里最好使用 下标 1 ~ n 到 1 ~ m 存储,这样就可以方便,根据一条规律来使用即可。

初始化函数

cpp 复制代码
// 初始化矩阵前缀和
inline void Init(){
    for(int i = 1;i <= n;++i)
	    for(int j = 1;j <= m;++j)
    	    s[i][j] = s[i - 1][j] + s[i][j - 1] + a[i][j] - s[i - 1][j - 1];
}

获取矩阵和函数

cpp 复制代码
// 根据左上角坐标以及右下角坐标获取矩阵和
inline int getSum(PII p1,PII p2){
	int x1 = p1.x,y1=p1.y;
	int x2 = p2.x,y2=p2.y;
	return s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];
}

题解代码

cpp 复制代码
#include <bits/stdc++.h>
#define int long long
#define endl '\n'
#define x first
#define y second
#define IOS ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
using PII = pair<int,int>;
const int N = 510;
int a[N][N],s[N][N],n,m,k,ans;
// 初始化矩阵前缀和
inline void Init(){
    for(int i = 1;i <= n;++i)
	    for(int j = 1;j <= m;++j)
    	    s[i][j] = s[i - 1][j] + s[i][j - 1] + a[i][j] - s[i - 1][j - 1];
}

// 根据左上角坐标以及右下角坐标获取矩阵和
inline int getSum(PII p1,PII p2){
	int x1 = p1.x,y1=p1.y;
	int x2 = p2.x,y2=p2.y;
	return s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];
}
signed main(){
	IOS;
	cin >> n;
	m = n;
	for(int i = 1;i <= n;++i)
	    for(int j = 1;j <= m;++j)
			cin >> a[i][j];

// 初始化矩阵前缀和
	Init();
	
// 	循环遍历所有上下坐标,并获取矩阵和
	for(int i = 1;i <= n;++i){
		for(int j = 1;j <= m;++j){
			PII leftUp = PII(i,j);
			for(int x = i;x <= n;++x){
			    for(int y = j;y <= m;++y){
			    	PII rightDown = PII(x,y);
					int sum = getSum(leftUp,rightDown);
					ans = max(sum,ans);
				}
			}
		}
	}

	cout << ans << endl;
	return 0;
}

最后提交

相关推荐
云云32113 小时前
亚矩阵云手机针对AdMob广告平台怎么进行多账号的广告风控
大数据·网络·线性代数·游戏·智能手机·矩阵
余=1853816280013 小时前
矩阵系统源码开发技术难题与应对策略
线性代数·矩阵
終不似少年遊*13 小时前
机器学习方法实现数独矩阵识别器
人工智能·python·opencv·机器学习·计算机视觉·矩阵
心动啊12114 小时前
Numpy7——数学2(矩阵基础(矩阵的逆和行列式),线性方程基础)
线性代数·矩阵·numpy
写写闲篇儿20 小时前
搜索二维矩阵
线性代数·算法·矩阵
Psycho_MrZhang20 小时前
高等数学基础(行列式和矩阵的秩)
线性代数·矩阵
蒙奇D索大20 小时前
【11408学习记录】考研数学核心突破:矩阵本质、系统信息与向量空间基
笔记·学习·线性代数·考研·矩阵·改行学it
蒙奇D索大1 天前
【11408学习记录】[特殊字符] 速解命题核心!考研数学线性代数:4类行列式满分技巧(含秒杀公式)
笔记·学习·线性代数·考研·改行学it
亚图跨际2 天前
数值偏微分方程的代数骨架:线性代数及其挑战-AI云计算
人工智能·线性代数·机器学习
第六五2 天前
核方法、核技巧、核函数、核矩阵
线性代数·矩阵