子矩阵的和(矩阵前缀和)

题目链接:用户登录 - C语言网

在这里可以模拟一下就知道了,

记录每个 (0,0) 到 (i,j)的矩阵和

然后区间子矩阵的和,就减去多余的部分的矩阵和就可以得到了 子矩阵的和

然后 这里最好使用 下标 1 ~ n 到 1 ~ m 存储,这样就可以方便,根据一条规律来使用即可。

初始化函数

cpp 复制代码
// 初始化矩阵前缀和
inline void Init(){
    for(int i = 1;i <= n;++i)
	    for(int j = 1;j <= m;++j)
    	    s[i][j] = s[i - 1][j] + s[i][j - 1] + a[i][j] - s[i - 1][j - 1];
}

获取矩阵和函数

cpp 复制代码
// 根据左上角坐标以及右下角坐标获取矩阵和
inline int getSum(PII p1,PII p2){
	int x1 = p1.x,y1=p1.y;
	int x2 = p2.x,y2=p2.y;
	return s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];
}

题解代码

cpp 复制代码
#include <bits/stdc++.h>
#define int long long
#define endl '\n'
#define x first
#define y second
#define IOS ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
using PII = pair<int,int>;
const int N = 510;
int a[N][N],s[N][N],n,m,k,ans;
// 初始化矩阵前缀和
inline void Init(){
    for(int i = 1;i <= n;++i)
	    for(int j = 1;j <= m;++j)
    	    s[i][j] = s[i - 1][j] + s[i][j - 1] + a[i][j] - s[i - 1][j - 1];
}

// 根据左上角坐标以及右下角坐标获取矩阵和
inline int getSum(PII p1,PII p2){
	int x1 = p1.x,y1=p1.y;
	int x2 = p2.x,y2=p2.y;
	return s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];
}
signed main(){
	IOS;
	cin >> n;
	m = n;
	for(int i = 1;i <= n;++i)
	    for(int j = 1;j <= m;++j)
			cin >> a[i][j];

// 初始化矩阵前缀和
	Init();
	
// 	循环遍历所有上下坐标,并获取矩阵和
	for(int i = 1;i <= n;++i){
		for(int j = 1;j <= m;++j){
			PII leftUp = PII(i,j);
			for(int x = i;x <= n;++x){
			    for(int y = j;y <= m;++y){
			    	PII rightDown = PII(x,y);
					int sum = getSum(leftUp,rightDown);
					ans = max(sum,ans);
				}
			}
		}
	}

	cout << ans << endl;
	return 0;
}

最后提交

相关推荐
短视频矩阵源码定制1 小时前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
AI Chen3 小时前
【矩阵分析与应用】【第5章 梯度分析与最优化】【5.2.2 矩阵迹的微分计算示例d(tr(U))=tr(dU)证明】
矩阵·
短视频矩阵源码定制3 小时前
矩阵系统全面解析:构建智能营销体系的核心引擎
java·人工智能·矩阵·aigc·视频
知识搬运工人1 天前
传统卷积神经网络中的核心运算是卷积或者矩阵乘,请问transformer模型架构主要的计算
矩阵·cnn·transformer
前端炒粉2 天前
18.矩阵置零(原地算法)
javascript·线性代数·算法·矩阵
AI Chen2 天前
【矩阵分析与应用】【第1章 矩阵与线性方程组】【1.6.2.2 迹的循环置换性质】
矩阵·
大千AI助手2 天前
HOSVD(高阶奇异值分解):高维数据的“解剖术”
人工智能·线性代数·矩阵·张量·svd·hosvd·高阶奇异值分解
marsggbo2 天前
尝试从源头理解 SVD 原理和计算
线性代数·奇异值分解·svd
我想吃余2 天前
【0基础学算法】前缀和刷题日志(三):连续数组、矩阵区域和
算法·矩阵·哈希算法
贝塔实验室2 天前
LDPC 码的度分布
线性代数·算法·数学建模·fpga开发·硬件工程·信息与通信·信号处理