【大数据学习 | Spark】Spark的改变分区的算子

当分区由多变少时,不需要shuffle,也就是父RDD与子RDD之间是窄依赖

当分区由少变多时,是需要shuffle的。

但极端情况下(1000个分区变成1个分区),这时如果将shuffle设置为false,父子RDD是窄依赖关系,他们同处在一个Stage中,就可能造成spark程序的并行度不够,从而影响性能,如果1000个分区变成1个分区,为了使coalesce之前的操作有更好的并行度,可以将shuffle设置为true。

Scala 复制代码
scala> val arr = Array(1,2,3,4,5,6,7,8,9)
arr: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> sc.makeRDD(arr,3)
res12: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[14] at makeRDD at <console>:27

scala> res12.coalesce(2)
res13: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[15] at coalesce at <console>:26

scala> res13.partitions.size 
res14: Int = 2

scala> res12.coalesce(12)
res15: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[16] at coalesce at <console>:26

scala> res15.partitions.size
res16: Int = 3

scala> res12.repartition(2)
res17: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[20] at repartition at <console>:26

scala> res17.partitions.size
res18: Int = 2

scala> res12.repartition(12)
res19: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[24] at repartition at <console>:26

scala> res19.partitions.size
res20: Int = 12

repartition算子底层调用的是coalesce算子。且shuffle指定了值为true。一定会发生shuffle阶段。

repartition带有shuffle可以增加也可以减少。shuffle参数指定为true,即一定会发生shuffle阶段。

coalesce算子只能减少不能增加。由于coalesce的shuffle默认false。

例子:

如果说一个阶段中存在union或者是coalesce算子会出现rdd的分区数量变化,但是没有shuffle的情况,看最后的rdd的分区个数就是当前阶段的task任务的个数

coalesce算子并没有发生shuffle,没有划分stage。但reduceByKey产生了shuffle,所以应该划分stage。

相关推荐
zskj_qcxjqr38 分钟前
七彩喜艾灸机器人:当千年中医智慧遇上现代科技
大数据·人工智能·科技·机器人
TiAmo zhang4 小时前
SQL Server 2019实验 │ 表数据插入、修改和删除
数据库·oracle
洛克大航海4 小时前
Ubuntu安装Hbase
大数据·linux·数据库·ubuntu·hbase
笨手笨脚の4 小时前
Kafka-1 初识消息引擎系统
分布式·kafka·消息队列·消息引擎系统
橘子在努力4 小时前
【橘子ES】如何本地调试ES源码
elasticsearch·搜索引擎
Savvy..4 小时前
消息队列MQ
kafka·消息队列·rabbitmq·rocketmq·mq
GIOTTO情5 小时前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
ApacheSeaTunnel6 小时前
新兴数据湖仓手册·从分层架构到数据湖仓架构(2025):数据仓库分层的概念与设计
大数据·数据仓库·开源·数据湖·dataops·白鲸开源·底层技术
落雪财神意6 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
柳贯一(逆流河版)6 小时前
ElasticSearch 实战:全文检索与数据聚合分析的完整指南
大数据·elasticsearch·全文检索