【大数据学习 | Spark】Spark的改变分区的算子

当分区由多变少时,不需要shuffle,也就是父RDD与子RDD之间是窄依赖

当分区由少变多时,是需要shuffle的。

但极端情况下(1000个分区变成1个分区),这时如果将shuffle设置为false,父子RDD是窄依赖关系,他们同处在一个Stage中,就可能造成spark程序的并行度不够,从而影响性能,如果1000个分区变成1个分区,为了使coalesce之前的操作有更好的并行度,可以将shuffle设置为true。

Scala 复制代码
scala> val arr = Array(1,2,3,4,5,6,7,8,9)
arr: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> sc.makeRDD(arr,3)
res12: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[14] at makeRDD at <console>:27

scala> res12.coalesce(2)
res13: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[15] at coalesce at <console>:26

scala> res13.partitions.size 
res14: Int = 2

scala> res12.coalesce(12)
res15: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[16] at coalesce at <console>:26

scala> res15.partitions.size
res16: Int = 3

scala> res12.repartition(2)
res17: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[20] at repartition at <console>:26

scala> res17.partitions.size
res18: Int = 2

scala> res12.repartition(12)
res19: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[24] at repartition at <console>:26

scala> res19.partitions.size
res20: Int = 12

repartition算子底层调用的是coalesce算子。且shuffle指定了值为true。一定会发生shuffle阶段。

repartition带有shuffle可以增加也可以减少。shuffle参数指定为true,即一定会发生shuffle阶段。

coalesce算子只能减少不能增加。由于coalesce的shuffle默认false。

例子:

如果说一个阶段中存在union或者是coalesce算子会出现rdd的分区数量变化,但是没有shuffle的情况,看最后的rdd的分区个数就是当前阶段的task任务的个数

coalesce算子并没有发生shuffle,没有划分stage。但reduceByKey产生了shuffle,所以应该划分stage。

相关推荐
武子康1 小时前
大数据-98 Spark 从 DStream 到 Structured Streaming:Spark 实时计算的演进
大数据·后端·spark
阿里云大数据AI技术1 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
lunz_fly19922 小时前
Oracle清理:如何安全删除trace, alert和archivelog文件?
oracle
涛哥开发笔记4 小时前
Kakfa核心概念和架构
kafka
代码匠心4 小时前
从零开始学Flink:数据源
java·大数据·后端·flink
Lx3526 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
MacroZheng9 小时前
横空出世!MyBatis-Plus 同款 ES ORM 框架,用起来够优雅!
java·后端·elasticsearch
武子康9 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
expect7g10 小时前
Flink KeySelector
大数据·后端·flink
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据