【大数据学习 | Spark】Spark的改变分区的算子

当分区由多变少时,不需要shuffle,也就是父RDD与子RDD之间是窄依赖

当分区由少变多时,是需要shuffle的。

但极端情况下(1000个分区变成1个分区),这时如果将shuffle设置为false,父子RDD是窄依赖关系,他们同处在一个Stage中,就可能造成spark程序的并行度不够,从而影响性能,如果1000个分区变成1个分区,为了使coalesce之前的操作有更好的并行度,可以将shuffle设置为true。

Scala 复制代码
scala> val arr = Array(1,2,3,4,5,6,7,8,9)
arr: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> sc.makeRDD(arr,3)
res12: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[14] at makeRDD at <console>:27

scala> res12.coalesce(2)
res13: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[15] at coalesce at <console>:26

scala> res13.partitions.size 
res14: Int = 2

scala> res12.coalesce(12)
res15: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[16] at coalesce at <console>:26

scala> res15.partitions.size
res16: Int = 3

scala> res12.repartition(2)
res17: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[20] at repartition at <console>:26

scala> res17.partitions.size
res18: Int = 2

scala> res12.repartition(12)
res19: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[24] at repartition at <console>:26

scala> res19.partitions.size
res20: Int = 12

repartition算子底层调用的是coalesce算子。且shuffle指定了值为true。一定会发生shuffle阶段。

repartition带有shuffle可以增加也可以减少。shuffle参数指定为true,即一定会发生shuffle阶段。

coalesce算子只能减少不能增加。由于coalesce的shuffle默认false。

例子:

如果说一个阶段中存在union或者是coalesce算子会出现rdd的分区数量变化,但是没有shuffle的情况,看最后的rdd的分区个数就是当前阶段的task任务的个数

coalesce算子并没有发生shuffle,没有划分stage。但reduceByKey产生了shuffle,所以应该划分stage。

相关推荐
lilye6626 分钟前
程序化广告行业(39/89):广告投放的数据分析与优化秘籍
大数据·人工智能·数据分析
IT成长日记1 小时前
Elasticsearch安全加固指南:启用登录认证与SSL加密
安全·elasticsearch·ssl
半间烟雨2 小时前
⼆、Kafka客户端消息流转流程
分布式·kafka
Elasticsearch2 小时前
现在支持通过 EDOT Collector 在 Kubernetes 上动态发现工作负载
elasticsearch
中科岩创2 小时前
某地老旧房屋自动化监测项目
大数据·物联网·自动化
viperrrrrrrrrr73 小时前
大数据学习(95)-谓词下推
大数据·sql·学习
汤姆yu4 小时前
基于python大数据的旅游可视化及推荐系统
大数据·旅游·可视化·算法推荐
zhangjin12224 小时前
kettle从入门到精通 第九十四课 ETL之kettle MySQL Bulk Loader大批量高性能数据写入
大数据·数据仓库·mysql·etl·kettle实战·kettlel批量插入·kettle mysql
爱的叹息5 小时前
详解隔离级别(4种),分别用表格展示问题出现的过程及解决办法
数据库·oracle
哈哈真棒5 小时前
hadoop 集群的常用命令
大数据