DataWorks快速入门

DataWorks基于MaxCompute、Hologres、EMR、AnalyticDB、CDP等大数据引擎,为数据仓库、数据湖、湖仓一体等解决方案提供统一的全链路大数据开发治理平台。本文以DataWorks的部分核心功能为例,指导您使用DataWorks接入数据并进行业务处理、周期调度以及数据可视化。

入门简介

通过本快速入门,您可以快速完成以下操作。

  1. 数据同步:通过DataWorks的数据集成模块,创建离线同步任务,将业务数据同步至大数据计算平台(如MaxCompute数仓)。

  2. 数据清洗:在DataWorks的数据开发模块中,对业务数据进行处理、分析和挖掘。

  3. 数据展示:在DataWorks的数据分析模块中,将分析结果转化为图表,便于业务人员理解。

  4. 周期性调度:为数据同步和数据清洗流程配置周期性调度,使其定时执行。

前提条件

为确保本教程可以顺利进行,推荐使用阿里云主账号或具备AliyunDataWorksFullAccess 权限的RAM用户。具体操作,请参见准备阿里云账号(主账号)准备RAM用户(子账号)

说明

DataWorks提供了完善的权限管控机制,支持在产品级与模块级对权限进行管控,如果您需要更精细的权限控制,请参见DataWorks权限体系功能概述

准备工作

  1. 创建工作空间并绑定资源组。

    本教程以华东2(上海) 地域为例,介绍DataWorks快速入门,您需要登录DataWorks管理控制台,切换至**华东2(上海)**地域,查看该地域是否开通DataWorks。

    说明

    本教程以**华东2(上海)**为例,在实际使用中,请根据实际业务数据所在位置确定开通地域:

    • 如果您的业务数据位于阿里云的其他云服务,请选择与其相同的地域。

    • 如果您的业务在本地,需要通过公网访问,请选择与您实际地理位置较近的地域,以降低访问延迟。

    • 如果未开通,单击0元组合购买,通过组合购买,一站式完成DataWorks开通、默认空间创建以及资源组绑定。

      新开通DataWorks步骤

    • 如果已开通,则需要手动创建本次教程使用的工作空间、资源组及资源组绑定操作。

      手动创建工作空间、资源组及资源组绑定操作

  2. 为资源组绑定的VPC配置EIP。

    本教程使用的电商平台公开测试业务数据需要通过公网获取,而上一步创建的通用型资源组默认不具备公网访问能力,需要为资源组绑定的VPC配置公网NAT网关,添加EIP,使其与公开数据网络打通,从而获取数据。

    配置步骤

操作步骤

本文以如下场景为例,指导您快速体验DataWorks的相关功能:

假设某一电商平台将商品信息、订单信息存储在MySQL数据库中,需要定期对订单数据进行分析,通过可视化的方式查看每日最畅销商品类目排名表。

步骤一:数据同步

  1. 创建数据源。

    DataWorks通过创建数据源的方式,接入数据来源和数据去向,因此,本步骤需要分别创建MySQL和MaxCompute两个数据源

    • MySQL数据源,用于连接数据来源(存储业务数据的MySQL数据库),为本教程提供原始业务数据。

      说明

      您无需准备本教程使用的原始业务数据,为方便测试和学习,DataWorks为您提供测试数据集,相关表数据已存储在公网MySQL数据库中,您只需创建MySQL数据源接入即可。

      创建MySQL数据源步骤

    • MaxCompute数据源,用于连接数据去向(MaxCompute数仓),将MaxCompute数据源绑定至数据开发后,能够为本教程提供数据存储和计算能力。

      • 如果您的项目空间中存在已添加的MaxCompute数据源,则无需进行此步骤

      • 如果您的项目空间中没有添加MaxCompute数据源,在参考如下步骤创建。

        创建MaxCompute数据源步骤

  2. 数据开发绑定MaxCompute数据源。

    需要先将MaxCompute数据源绑定至数据开发,后续才能在数据开发模块中对MaxCompute的数据进行处理。

    1. 在左上角单击

      > 全部产品 > 数据开发与运维 > DataStudio(数据开发)

    2. 在左侧导航栏单击数据源

      ),找到已创建的MaxCompute数据源,单击绑定

      说明

      如果您的数据开发模块已绑定了MaxCompute数据源,则无需进行此步骤

  3. 创建虚拟节点,用于统筹管理整个电商平台销售数据分析的业务流程。该节点为空跑任务,无须编辑代码。

    在左侧导航栏单击数据开发 ,找到业务流程 > Workflow ,然后右键Workflow ,选择新建节点 > 通用 > 虚拟节点 ,自定义节点名称,本教程以Workshop为例。

  4. 创建离线同步任务。

    本教程使用的测试数据涉及两张表(商品信息源表item_info和订单信息源表trade_order),这两张表存储于MySQL数据源关联的MySQL数据库中,本步骤需要分别创建两个离线同步节点 (节点名称以ods_item_infoods_trade_order为例),用于将item_info表和trade_order表同步至MaxCompute数据源关联的MaxCompute数仓中,然后再进行后续数据开发。

    1. 创建ods_item_info离线同步节点

    2. 创建ods_trade_order离线同步节点

步骤二:数据清洗

数据已从MySQL同步至MaxCompute后,获得两张数据表(商品信息表ods_item_info和订单信息表ods_trade_order),您可以在DataWorks的数据开发模块对表中数据进行清洗、处理和分析,从而获取每日最畅销商品类目排名表。

说明

  • 运行ODPS节点时,会展示费用预估,由于每一个ODPS节点配置的SQL中同时包括CREATEINSERT 语句,INSERT时,表还未创建,因此可能提示预估费用失败,请忽略此报错,直接运行即可。

  • DataWorks提供调度参数,可实现代码动态入参,您可在SQL代码中通过**{变量名}**的方式定义代码中的变量,并在**调度配置** \> **调度参数** 处,为该变量赋值。调度参数支持的格式,详情请参见[调度参数支持的格式](https://help.aliyun.com/zh/dataworks/user-guide/supported-formats-of-scheduling-parameters "调度参数支持的格式")。本示例SQL中使用了调度参数`{bizdate}`,表示业务日期为前一天。

  1. 创建dim_item_info节点。

    基于ods_item_info表,处理商品维度数据,产出商品基础信息维度表dim_item_info

    操作步骤

  2. 创建dwd_trade_order节点。

    基于ods_trade_order表,对订单的详细交易数据进行初步清洗、转换和业务逻辑处理,产出交易下单明细事实表dwd_trade_order

    操作步骤

  3. 创建dws_daily_category_sales节点。

    基于dwd_trade_order表和dim_item_info表,对DWD层经过清洗和标准化的明细数据进行汇总,产出每日商品类目销售汇总表dws_daily_category_sales

    操作步骤

  4. 创建ads_top_selling_categories节点。

    基于dws_daily_category_sales表,产出每日最畅销商品类目排名表ads_top_selling_categories

    操作步骤

步骤三:数据展示

您已经将从MySQL中获取的原始测试数据,经过数据开发处理,汇总于表ads_top_selling_categories中,现在可查询表数据,查看数据分析后的结果。

  1. 在左上角单击

    > 全部产品 > 数据分析 > SQL查询

  2. 在我的文件后单击

    > 新建文件 ,自定义文件名 后单击确定

  3. 在SQL查询页面,配置如下SQL。

    SELECT * FROM ads_top_selling_categories WHERE pt=${bizdate};
    
  4. 单击顶部的运行(

    ),根据页面提示,在右上角选择MaxCompute数据源后单击确定 ,然后在费用预估 页面,单击运行

  5. 在查询结果中单击

    ,查看可视化图表结果,您可以单击图表右上角的

    自定义图表样式。自定义图表样式的更多信息,请参见增强分析(卡片和报告)

  6. 您也可以单击图表右上角保存 ,将图表保存为卡片,然后在左侧导航栏单击卡片

    )查看。

步骤四:周期性调度

通过完成前文操作步骤,您已经获取了前一天各类商品的销售数据,但是,如果需要每天获取最新的销售数据,则可以为数据开发中各任务节点配置周期任务,使其周期性定时执行。

说明

为简化操作,快速入门教程以可视化方式为业务流程配置调度,DataWorks还支持手动精细化配置,各任务节点支持根据SQL自动解析上下游依赖,调度配置的更多信息,请参见任务调度配置

  1. 在左上角单击

    > 全部产品 > 数据开发与运维 > DataStudio(数据开发)

  2. 双击业务流程Workflow,在画布中移动各节点位置并按下图拖拽出各节点的上下游依赖关系。

  3. 单击右侧流程参数 ,配置参数名称bizdate参数值或表达式$bizdate,单击保存

  4. 双击虚拟节点(Workshop),配置如下周期调度参数后,单击顶部的保存

    )。

    说明

    其他参数保持默认即可。

  5. 切换至Workflow 业务流程页签,单击顶部的运行 ,参数bizdate填写为前一天(例如今天为20240731,则此处填写为20240730),测试所有流程是否均能成功运行。

  6. 所有节点均能成功运行后,点击顶部的提交,将流程中所有节点提交至运维中心。

  7. 在左上角单击

    > 全部产品 > 数据开发与运维 > 运维中心(工作流)

  8. 周期任务运维 > 周期任务中即可看到已创建的周期任务。

    说明

    如需展示如下图的所有上下游依赖节点,请右键单击Workshop节点,选择展开子节点 > 四层

相关推荐
終不似少年遊*1 小时前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
ProtonBase2 小时前
如何从 0 到 1 ,打造全新一代分布式数据架构
java·网络·数据库·数据仓库·分布式·云原生·架构
TGB-Earnest3 小时前
【py脚本+logstash+es实现自动化检测工具】
大数据·elasticsearch·自动化
大圣数据星球5 小时前
Fluss 写入数据湖实战
大数据·设计模式·flink
suweijie7685 小时前
SpringCloudAlibaba | Sentinel从基础到进阶
java·大数据·sentinel
Data跳动10 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
woshiabc11111 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq12 小时前
Saprk和Flink的区别
大数据·flink