深度学习:神经网络中的损失函数的使用

深度学习:神经网络中的损失函数的使用

损失函数是监督学习中的关键组成部分,用于衡量模型预测值与真实值之间的差异。优化算法(如梯度下降)通过最小化损失函数来调整模型参数,以提高模型的预测精度。以下是几种常用的损失函数及其在PyTorch中的实现和应用的详细解释:

1. L1 损失(绝对误差损失)

L1 损失是一个基于预测值和真实值之间绝对差值的损失函数,常用于回归问题。它有助于提高模型的鲁棒性,尤其是在异常值存在的情况下。

数学表达式

[ L ( y , y ^ ) = ∑ i = 1 n ∣ y i − y ^ i ∣ L(y, \hat{y}) = \sum_{i=1}^n |y_i - \hat{y}_i| L(y,y^)=∑i=1n∣yi−y^i∣ ]

其中 ( y i y_i yi) 是真实值,( y ^ i \hat{y}_i y^i) 是预测值。

PyTorch 实现
python 复制代码
import torch
import torch.nn as nn

loss_fn = nn.L1Loss()
y_true = torch.tensor([2, 3, 4, 5], dtype=torch.float)
y_pred = torch.tensor([1.5, 3.5, 3.8, 5.2], dtype=torch.float)
loss = loss_fn(y_pred, y_true)
示例

计算 L1 损失:

[ $L = |2 - 1.5| + |3 - 3.5| + |4 - 3.8| + |5 - 5.2| = 0.5 + 0.5 + 0.2 + 0.2 = 1.4 $]

2. MSE 损失(均方误差损失)

均方误差损失是回归问题中最常用的损失函数之一,计算真实值与预测值之间差值的平方和的均值。它放大了较大误差的影响,使模型更加注重减少大的预测误差。

数学表达式

[ L(y, \\hat{y}) = \\frac{1}{n} \\sum_{i=1}\^n (y_i - \\hat{y}_i)\^2 KaTeX parse error: Can't use function '\\\]' in math mode at position 1: \\̲\]̲ 其中 \\(y_iKaTeX parse error: Can't use function '\\)' in math mode at position 1: \\̲)̲ 是真实值,\\(\\hat{y}_i) 是预测值。

PyTorch 实现
python 复制代码
loss_fn = nn.MSELoss()
loss = loss_fn(y_pred, y_true)
示例

计算 MSE:

[ L = 1 4 ( ( 2 − 1.5 ) 2 + ( 3 − 3.5 ) 2 + ( 4 − 3.8 ) 2 + ( 5 − 5.2 ) 2 ) = 1 4 ( 0.25 + 0.25 + 0.04 + 0.04 ) = 0.145 L = \frac{1}{4}((2 - 1.5)^2 + (3 - 3.5)^2 + (4 - 3.8)^2 + (5 - 5.2)^2) = \frac{1}{4}(0.25 + 0.25 + 0.04 + 0.04) = 0.145 L=41((2−1.5)2+(3−3.5)2+(4−3.8)2+(5−5.2)2)=41(0.25+0.25+0.04+0.04)=0.145 ]

3. 交叉熵损失(Cross-Entropy Loss)

交叉熵损失是分类问题中最常用的损失函数之一,特别适用于多类分类问题。它衡量的是预测概率分布与真实分布之间的差异。

数学表达式

[ L = − ∑ c = 1 M y c log ⁡ ( p c ) L = -\sum_{c=1}^M y_c \log(p_c) L=−∑c=1Myclog(pc) ]

其中 ( y c y_c yc) 是如果样本属于类别 ( c c c),则为1,否则为0;( p c p_c pc) 是预测样本属于类别 ( c c c) 的概率。

PyTorch 实现
python 复制代码
loss_fn = nn.CrossEntropyLoss()
# 注意:CrossEntropyLoss的输入不应用one-hot编码,且预测值不通过softmax
y_true = torch.tensor([1])  # 类别索引为1
y_pred = torch.tensor([[0.1, 0.6, 0.3]])  # logits
loss = loss_fn(y_pred, y_true)
示例

计算交叉熵损失:

[ L = − ( 0 ⋅ log ⁡ ( 0.1 ) + 1 ⋅ log ⁡ ( 0.6 ) + 0 ⋅ log ⁡ ( 0.3 ) ) = − log ⁡ ( 0.6 ) ≈ 0.51 L = -(0 \cdot \log(0.1) + 1 \cdot \log(0.6) + 0 \cdot \log(0.3)) = -\log(0.6) \approx 0.51 L=−(0⋅log(0.1)+1⋅log(0.6)+0⋅log(0.3))=−log(0.6)≈0.51 ]

总结

损失函数是衡量模型性能的重要工具,通过最小化损失,我们可以使模型在特定任务上表现得更好。选择合适的损失函数对于模型的最终性能至关重要,应根据具体任务和数据的性质来选择。在PyTorch中,使用这些损失函数可以直接通过简单的API调用实现,方便模型的训练和优化。

相关推荐
QQ_77813297412 分钟前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
清 晨25 分钟前
Web3 生态全景:创新与发展之路
人工智能·web3·去中心化·智能合约
公众号Codewar原创作者1 小时前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
IT古董1 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生1 小时前
机器学习连载
人工智能·机器学习
Trouvaille ~1 小时前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
dundunmm1 小时前
论文阅读:Deep Fusion Clustering Network With Reliable Structure Preservation
论文阅读·人工智能·数据挖掘·聚类·深度聚类·图聚类
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的4通道电压 250M采样终端边缘计算采集板卡,主控支持龙芯/飞腾
人工智能·边缘计算
是十一月末2 小时前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉
云空2 小时前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉