大语言模型---Llama7B和Llama8B的区别;模型参数量;权重文件的不同;嵌入层权重的不同;输入序列长度的不同;应用场景

文章目录

  • 1.概要
  • [2. 模型参数量](#2. 模型参数量)
  • [3. 权重文件的不同](#3. 权重文件的不同)
  • [4. 嵌入层权重的不同](#4. 嵌入层权重的不同)
  • [5. 输入序列长度的不同](#5. 输入序列长度的不同)
  • [6. 应用场景](#6. 应用场景)

1.概要

LLaMA(Large Language Model Meta AI)是由Meta开发的一系列语言模型,其中不同版本的参数量(如7B、8B等)反映了模型的规模和能力。这些版本之间的区别主要体现在以下几个方面:

2. 模型参数量

  • LLaMA 7B:具有70亿个参数(7 billion parameters)。
  • LLaMA 8B:具有80亿个参数(8 billion parameters)

3. 权重文件的不同

  • 8B 模型的权重文件被拆分成了 4 个部分(model-00001-of-00004.safetensors 到 model-00004-of-00004.safetensors)。
  • 7B 模型的权重文件只有 2 个部分(model-00001-of-00002.safetensors 和 model-00002-of-00002.safetensors)。
  • 8B 模型包含 score.weight,表明它用于分类任务。

4. 嵌入层权重的不同

  • 7B 模型支持 max_position_embeddings 达到 32000;
  • 8B 模型支持 max_position_embeddings 达到 131072。

5. 输入序列长度的不同

  • 7B 模型最大输入序列长度 (max_position_embeddings: 4096)
  • 8B 模型支持超长的输入序列 (max_position_embeddings: 131072)

6. 应用场景

  • 7B 模型:
    • 面向轻量级的NLP任务,如简单的聊天机器人、情感分析、短文生成等。
    • 非常适合边缘计算场景和低功耗设备。
  • 8B 模型:
    • 支持序列分类任务,8B 模型天生适合序列建模和分类任务,可以调整为支持回归输出(连续值预测),这是8B模型常用于Reward Model的原因。
    • 可以在处理细节和准确性要求较高的任务中表现更好。
相关推荐
遗落凡尘的萤火-生信小白1 分钟前
转录组数据挖掘(生物技能树)(第11节)下游分析
人工智能·数据挖掘
XinZong10 分钟前
【OpenAI】获取OpenAI API Key的多种方式全攻略:从入门到精通,再到详解教程!
人工智能
没有余地 EliasJie12 分钟前
深度学习图像视觉 RKNN Toolkit2 部署 RK3588S边缘端 过程全记录
人工智能·嵌入式硬件·深度学习
冷冻工厂1 小时前
解码语言:命名实体识别(NER)技术
自然语言处理
HelpLook HelpLook1 小时前
高新技术行业中的知识管理:关键性、挑战、策略及工具应用
人工智能·科技·aigc·客服·知识库搭建
青松@FasterAI1 小时前
【RAG 项目实战 05】重构:封装代码
人工智能·深度学习·自然语言处理·nlp
阿勉要睡觉1 小时前
自然语言处理(词嵌入和词向量的使用)
自然语言处理
chnyi6_ya2 小时前
论文笔记:Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
论文阅读·人工智能·自然语言处理
&黄昏的乐师2 小时前
Opencv+ROS实现摄像头读取处理画面信息
linux·人工智能·opencv·计算机视觉·ros
默凉2 小时前
opencv-python 分离边缘粘连的物体(距离变换)
人工智能·python·opencv