大语言模型---Llama7B和Llama8B的区别;模型参数量;权重文件的不同;嵌入层权重的不同;输入序列长度的不同;应用场景

文章目录

  • 1.概要
  • [2. 模型参数量](#2. 模型参数量)
  • [3. 权重文件的不同](#3. 权重文件的不同)
  • [4. 嵌入层权重的不同](#4. 嵌入层权重的不同)
  • [5. 输入序列长度的不同](#5. 输入序列长度的不同)
  • [6. 应用场景](#6. 应用场景)

1.概要

LLaMA(Large Language Model Meta AI)是由Meta开发的一系列语言模型,其中不同版本的参数量(如7B、8B等)反映了模型的规模和能力。这些版本之间的区别主要体现在以下几个方面:

2. 模型参数量

  • LLaMA 7B:具有70亿个参数(7 billion parameters)。
  • LLaMA 8B:具有80亿个参数(8 billion parameters)

3. 权重文件的不同

  • 8B 模型的权重文件被拆分成了 4 个部分(model-00001-of-00004.safetensors 到 model-00004-of-00004.safetensors)。
  • 7B 模型的权重文件只有 2 个部分(model-00001-of-00002.safetensors 和 model-00002-of-00002.safetensors)。
  • 8B 模型包含 score.weight,表明它用于分类任务。

4. 嵌入层权重的不同

  • 7B 模型支持 max_position_embeddings 达到 32000;
  • 8B 模型支持 max_position_embeddings 达到 131072。

5. 输入序列长度的不同

  • 7B 模型最大输入序列长度 (max_position_embeddings: 4096)
  • 8B 模型支持超长的输入序列 (max_position_embeddings: 131072)

6. 应用场景

  • 7B 模型:
    • 面向轻量级的NLP任务,如简单的聊天机器人、情感分析、短文生成等。
    • 非常适合边缘计算场景和低功耗设备。
  • 8B 模型:
    • 支持序列分类任务,8B 模型天生适合序列建模和分类任务,可以调整为支持回归输出(连续值预测),这是8B模型常用于Reward Model的原因。
    • 可以在处理细节和准确性要求较高的任务中表现更好。
相关推荐
m0_7482333611 分钟前
用JAVA实现人工智能:采用框架Spring AI Java
java·人工智能·spring
刘大猫2626 分钟前
《docker基础篇:4.Docker镜像》包括是什么、分层的镜像、UnionFS(联合文件系统)、docker镜像的加载原理、为什么docker镜像要采用这种
人工智能·算法·计算机视觉
湫ccc31 分钟前
《Opencv》基础操作详解(5)
人工智能·opencv·计算机视觉
CodeJourney.1 小时前
开源人工智能模型框架:探索与实践
人工智能·能源
好评笔记1 小时前
多模态论文笔记——U-ViT(国内版DiT)
论文阅读·人工智能·深度学习·计算机视觉·aigc·transformer·u-vit
小西blue1 小时前
prompt提示词技巧
人工智能·prompt·提示词技巧·prompt技巧
爱学习的uu2 小时前
KAGGLE竞赛实战2-捷信金融违约预测竞赛-part1-数据探索及baseline建立
人工智能·python·决策树·机器学习·金融·数据挖掘·逻辑回归
Chatopera 研发团队2 小时前
Launch Linux( ubuntu14.04) GPU Acc machine in AWS
linux·人工智能·gpu算力·aws
盼小辉丶2 小时前
TensorFlow深度学习实战(4)——正则化技术详解
人工智能·深度学习·tensorflow
AnRan08082 小时前
ChatGPT如何赋能办公
人工智能·chatgpt