【大数据学习 | Spark-Core】详解分区个数

RDD默认带有分区的,那么创建完毕rdd以后他的分区数量是多少?

从hdfs读取文件的方式是最正规的方式,我们通过计算原理可以推出blk的个数和分区数量是一致的,本地化计算。

我们可以发现数据的读取使用的是textInputFormat,读取的数据内容是文本。

实现InputFormat接口必须实现getSplits和getRecordReader两个方法。FireInputFormat接口继承了InputFormat接口,实现了文件的切分(getSplits方法),而TextInputFormat类与ORCInputFormat继承并实现了FireInputFormat接口。TextInputFormat类实现了getRecordReader方法,即读取器为LineRecordReader,即对文本数据一行一行读取

数据结构的实现由上图进行规划

FileInputFormat中对于文件的切分进行了分割,切分几个部分就可以实现分区的个数。

文件在hdfs存储的文件在spark中的使用是不同的。

存储的时候单位是block块 128M。

读取的时候是以spark为主,spark的读取大小叫做split切片。默认情况下,split-size = block-size。

千万要将存储和计算区分开。

分区的多少完全看切片是多少和hdfs的存储无关,但是如果切片大小和block的大小一致的话那么就可以实现本地化计算,即不需要从其他机器通过网络传输或拉取一些数据到本地的executor进行计算。

numSplits的个数可以由参数传入。

由读取的总的数据量totalSize / 期望分区的个数goalSize可以得到期望切片的大小。

计算规则:块的大小与期望切片的大小取最小值,但二者最小值不能小于配置的minSize。否则按照minSize大小进行切片划分分区。

以上是源码逻辑分析

计算规则演示如下:

代码演示如下:

bash 复制代码
#追加形式增大文件的大小
cat word.txt >> word1.txt 
cat word.txt >> word2.txt 

最终形成结果为上图

分区数量为4

然后继续增加文件

bash 复制代码
cat word.txt >> word3.txt 

结果如上图:

最终分区数量为5

在读取hdfs的文件的时候,一般文件都比较大,所以期望分区在不设定的时候默认值是2,切片大小肯定大于128M,那么以128M为主肯定切片和block的数量是一致的。

集合并行化

根据集群中的核数进行适配,启动的时候有几个核,产生分区数量就是几个。

因为在计算的过程中,我们是为了做测试,为了达到最大的性能,所以分区数量会自己适配。

相关推荐
故乡de云4 小时前
Vertex AI 企业账号体系,Google Cloud 才能完整支撑
大数据·人工智能
汽车仪器仪表相关领域4 小时前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
木头程序员4 小时前
大模型边缘部署突破:动态推理技术与精度-延迟-能耗帕累托优化
大数据·人工智能·计算机视觉·自然语言处理·智能手机·数据挖掘
DX_水位流量监测4 小时前
无人机测流之雷达流速仪监测技术分析
大数据·网络·人工智能·数据分析·自动化·无人机
鹿衔`4 小时前
Hadoop HDFS 核心机制与设计理念浅析文档
大数据·hadoop·hdfs
萤丰信息4 小时前
开启园区“生命体”时代——智慧园区系统,定义未来的办公与生活
java·大数据·运维·数据库·人工智能·生活·智慧园区
TDengine (老段)5 小时前
TDengine Rust 连接器进阶指南
大数据·数据库·物联网·rust·时序数据库·tdengine·涛思数据
二哈喇子!5 小时前
MySQL数据库操作命令【SQL语言】
数据库·sql·视图与索引
YangYang9YangYan5 小时前
中专大数据技术专业学习数据分析的价值分析
大数据·学习·数据分析