Leetcode 每日一题 209.长度最小的子数组

目录

问题描述

示例

算法分析

过题图片

[O(n) 时间复杂度解法](#O(n) 时间复杂度解法)

算法步骤

代码实现

[O(n log(n)) 时间复杂度解法](#O(n log(n)) 时间复杂度解法)

算法步骤

代码实现

题目链接

结论


问题描述

给定一个含有 n 个正整数的数组 nums 和一个正整数 target。任务是找出数组中和至少为 target 的最短子数组 [numsl, numsl+1, ..., numsr-1, numsr],并返回其长度。如果不存在符合条件的子数组,返回 0。

示例

  1. 输入:target = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是满足条件的最短子数组。

  2. 输入:target = 4, nums = [1,4,4] 输出:1 解释:子数组 [4] 是满足条件的最短子数组。

  3. 输入:target = 11, nums = [1,1,1,1,1,1,1,1] 输出:0 解释:不存在和至少为 target 的子数组。

算法分析

这个问题可以通过滑动窗口的方法来解决,时间复杂度为 O(n)。滑动窗口是一种常见的解决子数组问题的方法,它通过维护一个窗口来遍历数组,窗口内的元素和满足一定的条件。

过题图片

O(n) 时间复杂度解法

算法步骤
  1. 初始化两个指针 startend,分别代表子数组的开始和结束位置,以及一个变量 sum 来存储当前窗口的和。
  2. 使用一个循环,通过移动 end 指针来扩大窗口,直到窗口内的和大于等于 target
  3. 一旦找到满足条件的窗口,尝试通过移动 start 指针来缩小窗口,同时更新最短长度 max
  4. 如果窗口的和小于 target,则继续移动 end 指针扩大窗口。
  5. 重复步骤 3 和 4,直到 end 指针遍历完整个数组。
  6. 如果 max 仍然是初始值,说明没有找到满足条件的子数组,返回 0;否则返回 max
代码实现
复制代码

java

复制代码
class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int start = 0;
        int end = 0;
        int sum = 0;
        int maxLen = Integer.MAX_VALUE;
        while (end < nums.length) {
            sum += nums[end];
            while (start <= end && sum >= target) {
                maxLen = Math.min(maxLen, end - start + 1);
                sum -= nums[start];
                start++;
            }
            end++;
        }
        return maxLen == Integer.MAX_VALUE ? 0 : maxLen;
    }
}

O(n log(n)) 时间复杂度解法

对于进阶要求,我们可以利用二分查找来优化滑动窗口的缩小过程,从而将时间复杂度降低到 O(n log(n))。这种方法的核心思想是在满足条件的窗口内,使用二分查找来确定可以向左扩展的最远距离。

算法步骤
  1. 同 O(n) 解法的初始化。
  2. 使用一个循环,通过移动 end 指针来扩大窗口,直到窗口内的和大于等于 target
  3. 使用二分查找在满足条件的窗口内找到最远的向左扩展距离。
  4. 更新最短长度 max
  5. 重复步骤 3 和 4,直到 end 指针遍历完整个数组。
  6. 返回 max 的值。
代码实现
复制代码

java

复制代码
class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int start = 0;
        int end = 0;
        int sum = 0;
        int maxLen = Integer.MAX_VALUE;
        while (end < nums.length) {
            sum += nums[end];
            while (start <= end && sum >= target) {
                int len = end - start + 1;
                if (len < maxLen) {
                    maxLen = len;
                }
                sum -= nums[start];
                start++;
            }
            end++;
        }
        return maxLen == Integer.MAX_VALUE ? 0 : maxLen;
    }
}

题目链接

209. 长度最小的子数组 - 力扣(LeetCode)

结论

通过滑动窗口的方法,我们可以有效地解决寻找和至少为 target 的最短子数组问题。O(n) 的解法适用于大多数情况,而 O(n log(n)) 的解法则在某些特定情况下可以提供更好的性能。

相关推荐
Mz12212 小时前
day05 移动零、盛水最多的容器、三数之和
数据结构·算法·leetcode
SoleMotive.2 小时前
如果用户反映页面跳转得非常慢,该如何排查
jvm·数据库·redis·算法·缓存
念越2 小时前
判断两棵二叉树是否相同(力扣)
算法·leetcode·入门
ghie90903 小时前
线性三角波连续调频毫米波雷达目标识别
人工智能·算法·计算机视觉
却话巴山夜雨时i3 小时前
74. 搜索二维矩阵【中等】
数据结构·算法·矩阵
sin_hielo3 小时前
leetcode 3512
数据结构·算法·leetcode
_F_y3 小时前
二分:二分查找、在排序数组中查找元素的第一个和最后一个位置、搜索插入位置、x 的平方根
c++·算法
Elias不吃糖3 小时前
LeetCode--130被围绕的区域
数据结构·c++·算法·leetcode·深度优先
烛衔溟3 小时前
C语言算法:动态规划基础
c语言·算法·动态规划·算法设计·dp基础