R和Julia免疫细胞映射到组织切片

将免疫细胞映射到组织切片是一种整合多种技术的高精度方法,用于揭示细胞在组织微环境中的空间分布。通过使用如空间转录组学、免疫荧光染色或单细胞RNA测序等技术,科学家可以精确定位特定免疫细胞类型,并分析它们与组织结构或病理学变化的关联。这项技术在研究免疫反应、肿瘤微环境以及感染疾病等领域具有重要应用,为理解复杂生物系统提供了关键洞察。

🌵R片段

在 R 中使用空间转录组学数据将免疫细胞映射到组织切片上,需要结合空间转录组学数据分析工具(如 Seurat、STUtility 或 spatialLIBD)和免疫细胞相关的参考基因表达特征。这是一个通用的分析流程:


步骤 1:加载必要的 R 包和数据

确保安装并加载相关的 R 包,例如 Seurat 和其他可视化工具。

r 复制代码
library(Seurat)
library(ggplot2)
library(dplyr)

# 如果有空间转录组学的数据,比如 10x Visium 数据
# 加载数据
spatial_data <- Load10X_Spatial(data.dir = "path_to_your_spatial_data")

步骤 2:数据预处理

对空间数据进行标准化、降维和聚类,得到初步的细胞分群信息。

r 复制代码
# 数据标准化
spatial_data <- SCTransform(spatial_data, assay = "Spatial", verbose = FALSE)

# 降维
spatial_data <- RunPCA(spatial_data, verbose = FALSE)
spatial_data <- RunUMAP(spatial_data, dims = 1:30)

# 聚类
spatial_data <- FindNeighbors(spatial_data, dims = 1:30)
spatial_data <- FindClusters(spatial_data, resolution = 0.5)

步骤 3:加载免疫细胞的参考基因表达特征

使用公开的免疫细胞标志基因集或从其他单细胞转录组研究中提取的免疫细胞特征。

r 复制代码
# 示例:定义 T 细胞、B 细胞等标志基因
immune_markers <- list(
  T_cells = c("CD3D", "CD3E", "CD8A", "CD4"),
  B_cells = c("CD19", "CD79A", "MS4A1"),
  Macrophages = c("CD68", "CD163", "MRC1")
)

步骤 4:计算基因表达得分

为每个空间位置计算免疫细胞相关基因的平均表达值或加权得分。

r 复制代码
# 添加细胞类型的分数
for (cell_type in names(immune_markers)) {
  spatial_data <- AddModuleScore(
    spatial_data,
    features = list(immune_markers[[cell_type]]),
    name = cell_type
  )
}

步骤 5:可视化空间免疫细胞分布

利用空间表达特征和组织切片图展示免疫细胞分布。

r 复制代码
# 可视化 T 细胞得分
SpatialFeaturePlot(spatial_data, features = "T_cells1", alpha = c(0.1, 1))

# 可视化 B 细胞得分
SpatialFeaturePlot(spatial_data, features = "B_cells1", alpha = c(0.1, 1))

步骤 6:整合与解读

结合分群结果,将免疫细胞分布与空间位置的细胞分群进行交叉验证。

r 复制代码
# 将聚类结果和免疫得分整合
DimPlot(spatial_data, reduction = "umap", group.by = "seurat_clusters") +
  SpatialFeaturePlot(spatial_data, features = "T_cells1", blend = TRUE)

进阶分析

  1. 空间邻域分析:探讨免疫细胞与其他细胞类型的空间关系。
  2. 配体-受体分析:研究免疫细胞与局部组织的分子交互。
  3. 时间或条件比较:比较不同时间点或实验条件下的免疫细胞分布。

通过上述方法,可以将免疫细胞精确地映射到组织切片上,揭示其空间分布和功能特征。

👉更新:亚图跨际

相关推荐
weixin_4624462315 小时前
PaddleX 3.2 人脸识别实战:自定义人脸库 + CartoonFace 官方案例 Top-K 识别完整指南
开发语言·r语言
Tiger Z16 小时前
《R for Data Science (2e)》免费中文翻译 (第19章) --- Joins(1)
r语言·编程·数据科学
Tiger Z17 小时前
《R for Data Science (2e)》免费中文翻译 (第18章) --- Missing values
开发语言·r语言
带我去滑雪19 小时前
R语言抑郁症状网络分析
r语言
AC赳赳老秦21 小时前
R语言数据分析:DeepSeek辅助生成统计建模代码与可视化图表
开发语言·人工智能·jmeter·数据挖掘·数据分析·r语言·deepseek
czliutz5 天前
R语言gm玩音乐示例代码Rmarkdown
开发语言·r语言
LASDAaaa12315 天前
【计算机视觉】基于Mask R-CNN的自动扶梯缺陷检测方法实现
计算机视觉·r语言·cnn
没有梦想的咸鱼185-1037-16636 天前
AI大模型支持下的:R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
开发语言·人工智能·机器学习·chatgpt·数据分析·r语言·ai写作
2501_941333106 天前
表格结构识别与内容解析——基于Cascade R-CNN的表格行、列、单元格自动检测与分类_1
分类·r语言·cnn
云州牧6 天前
Mastering Shiny 08 User feedback
r语言