香橙派--安装RKMPP、x264、libdrm、FFmpeg(支持rkmpp)以及opencv(支持带rkmpp的ffmpeg)(适用于RK3588平台)

1. 安装RKMPP

git clone https://github.com/rockchip-linux/mpp

cd mpp/build/linux/aarch64

./make-Makefiles.bash

make -j8

sudo make install

RKMPP:用于编解码测试,支持RK3588平台。

2. 安装x264

git clone https://code.videolan.org/videolan/x264.git

cd x264

./configure --prefix=/usr/local/x264 --disable-opencl --enable-static --enable-shared

make -j8

sudo make install

配置环境变量:

echo 'export PKG_CONFIG_PATH="/usr/local/x264/lib/pkgconfig:$PKG_CONFIG_PATH"' >> ~/.bashrc

echo 'export LD_LIBRARY_PATH="/usr/local/x264/lib:$LD_LIBRARY_PATH"' >> ~/.bashrc

source ~/.bashrc

创建x264配置文件:

sudo nano /etc/ld.so.conf.d/x264.conf

# 添加以下内容
/usr/local/x264/lib

3. 安装libdrm

wget https://dri.freedesktop.org/libdrm/libdrm-2.4.89.tar.bz2

tar -jxvf libdrm-2.4.89.tar.bz2

cd libdrm-2.4.89

sed -i 's/drm_private uint32_t nouveau_debug;/drm_private extern uint32_t nouveau_debug;/' nouveau/private.h

./configure --prefix=/usr/local/libdrm --host=aarch64-linux-gnu

make -j8

sudo make install

4. 安装FFmpeg

git clone https://git.ffmpeg.org/ffmpeg.git

cd ffmpeg

./configure --prefix=/usr/local/ffmpeg --enable-version3 --enable-libdrm --enable-rkmpp --enable-libx264 --enable-nonfree --enable-gpl --enable-shared

make -j8

sudo make install

4.1 配置环境变量

为了让系统正确识别FFmpeg,设置路径和库路径:

echo 'export PATH="/usr/local/my/ffmpeg/bin:$PATH"' >> ~/.bashrc

echo 'export LD_LIBRARY_PATH="/usr/local/my/ffmpeg/lib:$LD_LIBRARY_PATH"' >> ~/.bashrc

source ~/.bashrc

4.2 配置系统库

更新系统库配置,确保新安装的库文件能被识别:

sudo vim /etc/ld.so.conf

# 添加以下内容
include /etc/ld.so.conf.d/*.conf
/usr/local/lib
/usr/local/x264/lib
/usr/local/libdrm/lib

完成以上步骤后,你就能在RK3588平台上使用RKMPP加速的FFmpeg进行高效的视频编解码。

确保每个步骤都按照顺序完成,特别是环境变量和配置文件的修改,它们非常重要。

5.安装opencv

opencv安装包下载地址:

https://github.com/opencv/opencv/

扩展库下载地址:

https://github.com/opencv/opencv_contrib

一键编译脚本build-opencv.sh,将这个脚本放在下载的opencv同级目录:

#!/bin/bash

sudo apt-get update

sudo apt-get install -y \
    build-essential \
    pkg-config \
    libgtk2.0-dev \
    libavcodec-dev \
    libavformat-dev \
    libswscale-dev \
    libv4l-dev \
    libxvidcore-dev \
    libx264-dev \
    libjpeg-dev \
    libtiff5-dev \
    libvtk7-dev

# 设置工作目录
BASE_DIR=$(pwd)
OPENCV_DIR="${BASE_DIR}/opencv-4.10.0"
INSTALL_DIR="${OPENCV_DIR}/install"
BUILD_DIR="${OPENCV_DIR}/build"
CONTRIB_DIR="${BASE_DIR}/opencv_contrib-4.10.0"

# 创建安装和构建目录
mkdir -p "${INSTALL_DIR}"
mkdir -p "${BUILD_DIR}"

# 进入构建目录
cd "${BUILD_DIR}"

# 运行 CMake
cmake \
-D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX="${INSTALL_DIR}" \
-D OPENCV_EXTRA_MODULES_PATH="${CONTRIB_DIR}/modules" \
-D WITH_LIBV4L=ON \
-D WITH_EIGEN=ON \
-D WITH_TBB=ON \
-D WITH_OPENMP=ON \
-D WITH_OPENCL=ON \
-D WITH_OPENGL=ON \
-D ENABLE_CXX11=ON \
-D WITH_FFMPEG=ON \
-D FFMPEG_INCLUDE_DIR="/usr/local/ffmpeg/include" \
-D FFMPEG_LIBRARIES="/usr/local/ffmpeg/lib/libavcodec.so;/usr/local/ffmpeg/lib/libavformat.so;/usr/local/ffmpeg/lib/libavutil.so" \
-D OPENCV_ENABLE_NONFREE=ON \
-D OPENCV_GENERATE_PKGCONFIG=YES \
-D ENABLE_PRECOMPILED_HEADERS=OFF \
"${OPENCV_DIR}"  # 确保CMake指向正确的源代码目录

# 编译
make -j$(nproc)  # 调整为根据实际CPU核心数选择合适的线程数
make install

5.1 删除手动安装包中的opencv版本

sudo apt-get remove --purge libopencv* python3-opencv

sudo rm -rf /usr/local/lib/libopencv_*

sudo rm -rf /usr/local/lib/pkgconfig/opencv4.pc

sudo rm -rf /usr/local/include/opencv*

sudo rm -rf /usr/local/bin/opencv_*

5.2安装依赖以及编译

5.2.1 更新系统依赖库

sudo apt-get update

sudo apt-get install -y \
    build-essential \
    pkg-config \
    libgtk2.0-dev \
    libavcodec-dev \
    libavformat-dev \
    libswscale-dev \
    libv4l-dev \
    libxvidcore-dev \
    libx264-dev \
    libjpeg-dev \
    libtiff5-dev \
    libvtk7-dev

5.2.2 创建编译build目录以及运行 CMake

cd  opencv-4.10.0 && mkdir build && mkdir install && cd build

cmake \
-D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX="${INSTALL_DIR}" \
-D OPENCV_EXTRA_MODULES_PATH="${CONTRIB_DIR}/modules" \
-D WITH_LIBV4L=ON \
-D WITH_EIGEN=ON \
-D WITH_TBB=ON \
-D WITH_OPENMP=ON \
-D WITH_OPENCL=ON \
-D WITH_OPENGL=ON \
-D ENABLE_CXX11=ON \
-D WITH_FFMPEG=ON \
-D FFMPEG_INCLUDE_DIR="/usr/local/ffmpeg/include" \
-D FFMPEG_LIBRARIES="/usr/local/ffmpeg/lib/libavcodec.so;/usr/local/ffmpeg/lib/libavformat.so;/usr/local/ffmpeg/lib/libavutil.so" \
-D OPENCV_ENABLE_NONFREE=ON \
-D OPENCV_GENERATE_PKGCONFIG=YES \
-D ENABLE_PRECOMPILED_HEADERS=OFF \

5.2.3 开始编译以及生成库

make -j4 && make install

5.2.4 opencv库的安装

命令执行结束,在install生成库文件,我的文件夹结构为:

/home/orangepi/
├── opencv-4.10.0
│   ├── build
│   └── install
│       ├── bin
│       ├── include
│       ├── lib
│       └── share
└── opencv_contrib-4.10.0
    └── modules

下面开始将库文件拷贝到系统目录,在install目录下打开终端,分别执行以下命令:

(1)修改opencv-4.10.0/install/lib/pkgconfig/opencv4.pc

vim lib/pkgconfig/opencv4.pc

原始的:

# Package Information for pkg-config

prefix=/home/orangepi/opencv-4.10.0/install
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include/opencv4

Name: OpenCV
Description: Open Source Computer Vision Library
Version: 4.10.0
Libs: -L${exec_prefix}/lib -lopencv_gapi -lopencv_stitching -lopencv_alphamat -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_cudabgsegm -lopencv_cudafeatures2d -lopencv_cudaobjdetect -lopencv_cudastereo -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_intensity_transform -lopencv_line_descriptor -lopencv_mcc -lopencv_quality -lopencv_rapid -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_signal -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres -lopencv_cudacodec -lopencv_surface_matching -lopencv_tracking -lopencv_highgui -lopencv_datasets -lopencv_text -lopencv_plot -lopencv_videostab -lopencv_cudaoptflow -lopencv_optflow -lopencv_cudalegacy -lopencv_videoio -lopencv_cudawarping -lopencv_viz -lopencv_wechat_qrcode -lopencv_xfeatures2d -lopencv_shape -lopencv_ml -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d -lopencv_dnn -lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_cudaimgproc -lopencv_cudafilters -lopencv_imgproc -lopencv_cudaarithm -lopencv_core -lopencv_cudev
Libs.private: -lm -lpthread -lcudart_static -ldl -lrt -lnppc -lnppial -lnppicc -lnppidei -lnppif -lnppig -lnppim -lnppist -lnppisu -lnppitc -lnpps -lcublas -lcudnn -lcufft -L-L/usr/local/cuda-11.4 -llib64 -L-L/usr/lib -laarch64-linux-gnu
Cflags: -I${includedir}

新的:

# Package Information for pkg-config

prefix=prefix=/usr/local
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include/opencv4

Name: OpenCV
Description: Open Source Computer Vision Library
Version: 4.10.0
Libs: -L${exec_prefix}/lib -lopencv_gapi -lopencv_stitching -lopencv_alphamat -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_cudabgsegm -lopencv_cudafeatures2d -lopencv_cudaobjdetect -lopencv_cudastereo -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_intensity_transform -lopencv_line_descriptor -lopencv_mcc -lopencv_quality -lopencv_rapid -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_signal -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres -lopencv_cudacodec -lopencv_surface_matching -lopencv_tracking -lopencv_highgui -lopencv_datasets -lopencv_text -lopencv_plot -lopencv_videostab -lopencv_cudaoptflow -lopencv_optflow -lopencv_cudalegacy -lopencv_videoio -lopencv_cudawarping -lopencv_viz -lopencv_wechat_qrcode -lopencv_xfeatures2d -lopencv_shape -lopencv_ml -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d -lopencv_dnn -lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_cudaimgproc -lopencv_cudafilters -lopencv_imgproc -lopencv_cudaarithm -lopencv_core -lopencv_cudev
Libs.private: -lm -lpthread -lcudart_static -ldl -lrt -lnppc -lnppial -lnppicc -lnppidei -lnppif -lnppig -lnppim -lnppist -lnppisu -lnppitc -lnpps -lcublas -lcudnn -lcufft -L-L/usr/local/cuda-11.4 -llib64 -L-L/usr/lib -laarch64-linux-gnu
Cflags: -I${includedir}

(2)将 bin 文件夹复制到 /usr/local

sudo cp -r bin/* /usr/local/bin/

(3)将 include 文件夹复制到 /usr/local/include

sudo cp -r include/* /usr/local/include/

(4)将 lib 文件夹复制到 /usr/local/lib

sudo mv lib/python3.8/site-packages    lib/python3.8/dist-packages 

sudo cp -r lib/* /usr/local/lib/

(5)将 share 文件夹复制到 /usr/local/share

sudo cp -r share/* /usr/local/share/

5.3. 将OpenCV的库添加到系统路径

5.3.1 方法一:配置ld.so.conf文件

sudo vim /etc/ld.so.conf

在文件中加上一行

include /usr/local/lib

这个路径是cmake编译时填的动态库安装路径加上/lib

配置ld.so.conf文件

5.3.2 方法二:手动生成opencv.conf文件

sudo vim /etc/ld.so.conf.d/opencv.conf

是一个新建的空文件,直接添加路径,同理这个路径是cmake编译时填的动态库安装路径加上/lib

/usr/local/lib

5.3.3 应用配置更新

以上两种方法配置好后,执行如下命令使得配置的路径生效

sudo ldconfig

配置系统bash

因为在cmake时,选择了自动生成OpenCV的pkgconfig文件,在/usr/local/lib/pkgconfig路径可以看到文件opencv4.pc

确保文件存在,执行如下命令

sudo vim /etc/bash.bashrc

在文末添加

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH

如下:

bash.bashrc

保存退出,然后执行如下命令使配置生效

source /etc/bash.bashrc

echo 'export CPLUS_INCLUDE_PATH=/usr/local/include/opencv:/usr/local/include/opencv4:$CPLUS_INCLUDE_PATH' >> ~/.bashrc

echo 'export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH' >> ~/.bashrc

source ~/.bashrc

至此,Linux\Ubuntu18.04环境下OpenCV的安装以及配置已经全部完成,可以使用以下命令查看是否安装和配置成功

pkg-config --modversion opencv4

pkg-config --cflags opencv4

pkg-config --libs opencv4

最后添加软链接,确保C++编译没问题:

sudo mv /usr/local/include/opencv4  /usr/local/include/opencv

sudo ln -s /usr/local/include/opencv/opencv2   /usr/local/include/opencv2

sudo ln -s /usr/local/include/opencv/opencv2   /usr/local/include/opencv4
相关推荐
Baihai IDP27 分钟前
从 Llama 1 到 3.1:Llama 模型架构演进详解
人工智能·ai·开源·llm·llama
爱吃土豆的程序员1 小时前
文心一言与千帆大模型平台的区别:探索百度AI生态的双子星
人工智能·百度·文心一言·千帆大模型
奔跑的犀牛先生1 小时前
【小白学机器学习36】关于独立概率,联合概率,交叉概率,交叉概率和,总概率等 概念辨析的例子
人工智能·机器学习·概率论
AI浩1 小时前
上下文信息、全局信息、局部信息
人工智能·transformer
Elastic 中国社区官方博客1 小时前
Elasticsearch:Retrievers 介绍
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
&黄昏的乐师2 小时前
Opencv+ROS实现颜色识别应用
人工智能·opencv·学习·计算机视觉
小馒头学python2 小时前
深度学习中的卷积神经网络:原理、结构与应用
人工智能·深度学习·cnn
2zcode2 小时前
基于YOLOv8深度学习的脑肿瘤智能检测系统设计与实现(PyQt5界面+数据集+训练代码)
人工智能·深度学习·yolo
fhf2 小时前
感觉根本等不到35岁AI就把我裁了
前端·人工智能·程序员
m0_742848882 小时前
PyTorch3
人工智能·深度学习