人工智能——大语言模型

5. 大语言模型

5.1. 语言模型历史

20世纪90年代以前的语言模型都是基于语法分析这种方法,效果一直不佳。到了20世纪90年代,采用统计学方法分析语言,取得了重大进展。但是在庞大而复杂的语言信息上,基于传统统计的因为计算量巨大,难以进一步提升计算机语言分析的性能。2023年首度将基于神经网络的深度学习引入了语言分析模型中,计算机理解语言的准确性达到了前所未有的高度。依然是因为计算量巨大,基于深度学习的语言模型难以进一步提升准确性和普及应用。随着2018年,研究人员将Transformer引入神经网络,大幅缩减了计算量,而且提升了语言的前后关联度,再一次提升了自然语言处理的准确性,并且将计算机处理自然语言的成本大幅降低。

5.2. 概念

随着语言模型参数规模的提升,语言模型在各种任务中展现出惊人的能力(这种能力也称为"涌现能力" ),自此进入了大语言模型(Large Language Model, LLM)时代。大语言模型 (LLM) 指包含数百亿(或更多)参数的语言模型,这些模型在大量的文本数据上进行训练,例如国外的有GPT-3 、GPT-4、PaLM 、Galactica 和 LLaMA 等,国内的有ChatGLM、文心一言、通义千问、讯飞星火等。

LLM多用于自然语言处理领域的问答、翻译,进一步延伸到写文章,编写代码等。随着多模态能力的增加,大语言模型逐步展现出统都一人工智能的趋势,做到真正的通用人工智能(AGI)。LLM逐步成为一个基础模型,人们可以在LLM的基础上做进一步的优化,完成更加专业精细的任务。

5.3. Transformer

5.3.1. 简介

Transformer模型是由谷歌团队在2017年发表的论文《Attention is All You Need》所提出。这篇论文的主体内容只有几页,主要就是对下面这个模型架构的讲解。

5.3.2. 自注意力机制

传输的RNN用于处理系列时,会增加一个隐藏状态用来记录上一个时刻的序列信息。在处理翻译文本时,一个字的意思可能和前面序列的内容相关,通过隐藏状态,RNN能够很好地翻译上下文相关性较大的文本。但是如果文本内容非常大的时候,隐藏状态无法完全包括之前的所有状态(如果包括,其计算量非常巨大,难以实现)。

自注意力机制(Self-Attention)是在注意力机制上优化得来的,其只注意输入信息本身。即输入向量中每一个成员都和其他成员经过一个注意力函数处理之后,形成一个相关性的权重向量表。如:

这样一张权重向量表的计算量相比在RNN中隐藏状态的计算量少很多。

通过这个权重向量表,无论需要翻译的原始文件多大,都能够很好地找到之前信息对当前翻译信息的影响,可以翻译得更加准确。

相关推荐
KeKe_L11 分钟前
深度学习—参数初始化及激活函数Day35
人工智能·深度学习
virtaitech20 分钟前
探索 GAN 的演变之路
人工智能·神经网络·生成对抗网络
黑色叉腰丶大魔王29 分钟前
《掩码语言模型(Masked Language Model, MLM)》
人工智能·语言模型·自然语言处理
Elastic 中国社区官方博客36 分钟前
从 App Search 到 Elasticsearch — 挖掘搜索的未来
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·数据库开发
Jurio.1 小时前
【IEEE独立出版 | 厦门大学主办】第四届人工智能、机器人和通信国际会议(ICAIRC 2024,12月27-29日)
人工智能·深度学习·神经网络·机器学习·自然语言处理·数据挖掘·机器人
新智元1 小时前
AI卷翻科研!DeepMind 36页报告:全球实验室被「AI科学家」指数级接管
人工智能·后端
m0_742848881 小时前
机器学习3
人工智能·深度学习·机器学习
使者大牙2 小时前
【单点知识】基于PyTorch进行模型部署
人工智能·pytorch·python·深度学习
int WINGsssss2 小时前
对pytorch的底层nccl库进行插桩
人工智能·pytorch·python
美狐美颜sdk2 小时前
直播实时美颜平台开发详解:基于视频美颜SDK的技术路径
人工智能·计算机视觉·音视频·第三方美颜sdk·美狐美颜sdk