P3打卡-pytorch实现天气识别

1.检查GPU

复制代码
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

​​​​​

2.查看数据

复制代码
data_dir="data/weather_photos"
data_dir=pathlib.Path(data_dir)
data_paths=list(data_dir.glob('*'))
classNames=[str(path).split('\\')[2] for path in data_paths]
classNames

​​

3.数据可视化

python 复制代码
import matplotlib.pyplot as plt
from PIL import Image
image_floder='data/weather_photos/cloudy'
image_files=[f for f in os. listdir(image_floder) if f.endswith(('.jpg','.png','.jpeg'))]
fig,axes=plt.subplots(3,8,figsize=(16,6))
for ax,img_file in zip(axes.flat,image_files):
    img_path=os.path.join(image_floder,img_file)
    img=Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')
plt.tight_layout()
plt.show()

4.划分数据集

python 复制代码
total_datadir='./data/weather_photos'
train_transforms=transforms.Compose(
    [
        transforms.Resize([224,224]),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.485,0.456,0.406],
            std=[0.229,0.224,0.225]
        )
    ]
)
total_data=datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

train_size=int(0.8*len(total_data))
test_size=len(total_data)-train_size
train_dataset,test_dataset=torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset

import torch.utils
import torch.utils.data


batch_size=32
train_dl=torch.utils.data.DataLoader(train_dataset,batch_size,shuffle=True,num_workers=1)
test_dl=torch.utils.data.DataLoader(test_dataset,batch_size,shuffle=True,num_workers=1)

for X,y in test_dl:
    print("shape of X:[N,C,H,W]:",X.shape)
    print("shape of y:",y.shape,y.dtype)
    break

5.构建模型

python 复制代码
import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2,2)
        self.fc1 = nn.Linear(24*50*50, len(classNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool1(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

6.编译及训练模型

python 复制代码
loss_fn=nn.CrossEntropyLoss()
learn_rate=1e-3
opt=torch.optim.SGD(model.parameters(),lr=learn_rate)

def train(dataloader,model,loss_fn,optimizer):
    size=len(dataloader.dataset)
    num_batches=len(dataloader)
    train_loss,train_acc=0,0
    for X,y in dataloader:
        X,y=X.to(device),y.to(device)
        pred=model(X)
        loss=loss_fn(pred,y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
        train_loss+=loss.item()
    train_loss/=num_batches
    train_acc/=size
    return train_acc,train_loss

def test(dataloader,model,loss_fn):
    size=len(dataloader.dataset)
    num_batches=len(dataloader)
    test_loss,test_acc=0,0
    with torch.no_grad():
        for imgs,target in dataloader:
            imgs,target=imgs.to(device),target.to(device)
            target_pred=model(imgs)
            loss=loss_fn(target_pred,target)
            test_loss+=loss.item()
            test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()
    test_loss/=num_batches
    test_acc/=size
    return test_acc,test_loss

epochs=20
train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]
for epoch in range(epochs):
    model.train()
    epoch_train_acc,epoch_train_loss=train(train_dl,model,loss_fn,opt)
    model.eval()
    epoch_test_acc,epoch_test_loss=test(test_dl,model,loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Finished Training')

​​

7.结果可视化

python 复制代码
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")              
plt.rcParams['font.sans-serif']    = ['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False     
plt.rcParams['figure.dpi']         = 100        

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

​​​​​

总结:

1.导入数据

  • 第一步: 使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
  • 第二步: 使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
  • 第三步: 通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
  • 第四步: 打印classeNames列表,显示每个文件所属的类别名称。

2.神经网络数据shape变化过程

相关推荐
odoo中国1 分钟前
深度学习 Deep Learning 第16章 结构化概率模型
人工智能·深度学习·结构化模型
白熊1885 分钟前
【计算机视觉】OpenCV实战项目- 抖音动态小表情
人工智能·opencv·计算机视觉
摸鱼仙人~8 分钟前
为什么有的深度学习训练,有训练集、验证集、测试集3个划分,有的只是划分训练集和测试集?
人工智能·深度学习
机器之心9 分钟前
7B扩散LLM,居然能跟671B的DeepSeek V3掰手腕,扩散vs自回归,谁才是未来?
人工智能
魔众25 分钟前
AIGCPanel 0.10.0 重磅更新,功能再升级!
人工智能
白雪讲堂39 分钟前
AI SEO内容优化指南:如何打造AI平台青睐的高质量内容
人工智能·自然语言处理
云说智树40 分钟前
破解GenAI时代工业物联网落地难题:研华IoTSuite如何用“全栈技术“重构智造未来?
人工智能·物联网
G皮T41 分钟前
【Python Cookbook】字符串和文本(五):递归下降分析器
数据结构·python·正则表达式·字符串·编译原理·词法分析·语法解析
Yan-英杰44 分钟前
DeepSeek-R1模型现已登录亚马逊云科技
java·大数据·人工智能·科技·机器学习·云计算·deepseek
Jamence1 小时前
多模态大语言模型arxiv论文略读(一)
人工智能·深度学习·语言模型