【机器学习】机器学习基础

什么是机器学习?

机器学习(Machine Learning, ML)是一种人工智能(AI)的分支,指计算机通过数据学习规律并做出预测或决策,而无需明确编程。它的核心目标是让机器能够从经验中学习,逐渐提高自身表现。


机器学习的基本分类

根据任务类型,机器学习主要分为以下几类:

  1. 监督学习(Supervised Learning)

    • 目标:通过已有的标注数据(输入与输出的对应关系)学习一个函数,预测新数据的输出。
    • 应用场景
      • 分类:邮件是否是垃圾邮件(垃圾邮件/非垃圾邮件)
      • 回归:预测房价、股票走势等
    • 常用算法线性回归、逻辑回归、支持向量机、神经网络等。
  2. 无监督学习(Unsupervised Learning)

    • 目标:处理无标注数据,发现数据的潜在结构或分组规律。
    • 应用场景
      • 聚类:客户分组、图像分割
      • 降维:数据可视化、特征提取
    • 常用算法:K-means、主成分分析(PCA)、自编码器等。
  3. 强化学习(Reinforcement Learning)

    • 目标:通过与环境交互,学习如何采取行动以最大化累计奖励。
    • 应用场景
      • 游戏 AI(如 AlphaGo)
      • 机器人控制
    • 常用算法:Q-learning、深度 Q 网络(DQN)、策略梯度方法。
  4. 半监督学习(Semi-supervised Learning)

    • 目标:结合少量标注数据和大量未标注数据来提高学习效果。
    • 应用场景:标注成本高但未标注数据充足的场景(如医学图像分析)。
  5. 自监督学习(Self-supervised Learning)

    • 目标:通过从数据本身生成伪标签,进行无标注数据的预训练。
    • 应用场景:自然语言处理(BERT)、图像识别(SimCLR)。

机器学习的主要步骤

  1. 数据准备

    • 收集数据:来自数据库、日志或外部来源。
    • 数据预处理:清洗、归一化、填补缺失值、特征工程。
  2. 模型选择

    • 根据任务选择合适的算法(如回归、分类或聚类模型)。
  3. 模型训练

    • 使用训练集数据调整模型的参数,使其表现最佳。
  4. 模型验证

    • 通过验证集评估模型性能,调整超参数(如学习率、正则化系数)。
  5. 模型测试与部署

    • 使用测试集检验模型泛化能力,部署于实际应用中。

常用工具和框架


应用场景

  1. 图像识别(如人脸识别、物体检测)
  2. 自然语言处理(如机器翻译、文本生成)
  3. 推荐系统(如电影推荐、电商个性化推荐)
  4. 医疗诊断(如癌症预测、药物研发)
  5. 自动驾驶(如路径规划、环境感知)
相关推荐
mozun20201 分钟前
产业观察:哈工大机器人公司2025.4.22
大数据·人工智能·机器人·创业创新·哈尔滨·名校
-一杯为品-3 分钟前
【深度学习】#9 现代循环神经网络
人工智能·rnn·深度学习
硅谷秋水6 分钟前
ORION:通过视觉-语言指令动作生成的一个整体端到端自动驾驶框架
人工智能·深度学习·机器学习·计算机视觉·语言模型·自动驾驶
小墙程序员25 分钟前
机器学习入门(一)什么是机器学习
机器学习
Java中文社群28 分钟前
最火向量数据库Milvus安装使用一条龙!
java·人工智能·后端
豆芽81936 分钟前
强化学习(Reinforcement Learning, RL)和深度学习(Deep Learning, DL)
人工智能·深度学习·机器学习·强化学习
山北雨夜漫步42 分钟前
机器学习 Day14 XGboost(极端梯度提升树)算法
人工智能·算法·机器学习
yzx9910131 小时前
集成学习实际案例
人工智能·机器学习·集成学习
CodeJourney.1 小时前
DeepSeek与WPS的动态数据可视化图表构建
数据库·人工智能·信息可视化
jndingxin1 小时前
OpenCV 图形API(62)特征检测-----在图像中查找最显著的角点函数goodFeaturesToTrack()
人工智能·opencv·计算机视觉