【干货分享】Boosting算法简单案例

Boosting算法是一种集成学习方法,通过逐步迭代训练弱分类器,并通过加权组合它们的预测结果来构建一个强分类器。

下面是Boosting算法(以AdaBoost为例)的详细过程和一个案例:

  1. 数据准备:首先,将数据集分为训练集和测试集。训练集用于训练Boosting模型,测试集用于评估模型的性能。

  2. 初始化权重:对于训练集中的每个样本,初始化一个权重,使得所有样本的权重之和为1。初始权重可以是均匀分布的,即每个样本的权重相等。

  3. 迭代训练弱分类器:循环进行以下步骤,直到达到停止条件(例如,达到最大迭代次数或分类器性能足够好):

a. 训练一个弱分类器:使用当前样本权重训练一个弱分类器,例如决策树桩(仅有一个分裂节点的决策树)。

b. 计算分类器误差:计算弱分类器在训练集上的误差,通过比较分类器的预测结果和实际标签。

c. 计算分类器权重:基于分类器的误差,计算分类器的权重。误差越小的分类器权重越大,表示分类器的预测结果对于纠正错误更有权威性。

d. 更新样本权重:根据分类器的权重和分类器的预测结果,更新每个样本的权重。被错误分类的样本权重增加,被正确分类的样本权重减少。

e. 归一化样本权重:将样本权重归一化,使得所有样本的权重之和为1。

  1. 构建强分类器:将所有弱分类器的预测结果加权组合,得到最终的强分类器。

下面是一个简单的AdaBoost算法的计算实例,假设我们有一个二元分类问题,数据集包含6个样本和2个特征(X1和X2),目标变量为类别标签(Y):

| 样本 | X1 | X2 | Y |

|------|----|----|---|

| 1 | 1 | 2 | 0 |

| 2 | 2 | 1 | 0 |

| 3 | 3 | 3 | 1 |

| 4 | 4 | 2 | 1 |

| 5 | 3 | 4 | 0 |

| 6 | 5 | 5 | 1 |

我们将构建一个包含3个弱分类器的AdaBoost模型。

  1. 初始化权重:初始权重为均匀分布,每个样本的权重为1/6。

  2. 迭代训练弱分类器:

a. 弱分类器1:使用当前样本权重训练一个弱分类器。

在第一次迭代中,我们选择一个决策树桩作为弱分类器,它选择最佳的特征和阈值进行二元分类。

  • 决策树桩选择特征X1和阈值2进行分类。样本1、2、3和5被正确分类,样本4和6被错误分类。

b. 计算分类器误差:计算弱分类器在训练集上的误差。

  • 弱分类器1误差:错误分类的样本权重之和为1/6 + 1/6 = 1/3。

c. 计算分类器权重:基于分类器的误差,计算分类器的权重。

  • 弱分类器1权重:根据误差计算公式,弱分类器1的权重为0.5 * log((1 - 1/3) / (1/3)) ≈ 0.4236。

d. 更新样本权重:根据分类器的权重和分类器的预测结果,更新每个样本的权重。

  • 被错误分类的样本权重增加,被正确分类的样本权重减少。

样本1、2、3和5的权重由1/6增加到1/6 * exp(0.4236) ≈ 0.1889。

样本4和6的权重由1/6减少到1/6 * exp(-0.4236) ≈ 0.0625。

e. 归一化样本权重:将样本权重归一化,使得所有样本的权重之和为1。

  • 归一化后的样本权重:0.1889 + 0.1889 + 0.1889 + 0.1889 + 0.0625 + 0.0625 = 1。

f. 弱分类器2和弱分类器3的训练过程与弱分类器1类似,根据更新后的样本权重训练分类器并计算权重。

  1. 构建强分类器:将所有弱分类器的预测结果加权组合,得到最终的强分类器。

强分类器的预测结果由每个弱分类器的预测结果乘以其对应的权重,然后取加权结果的符号作为最终的预测类别。

假设弱分类器1、弱分类器2和弱分类器3的权重分别为0.4236、0.5432和0.6789,它们的预测结果分别为[-1, -1, 1, 1, -1, 1],则强分类器的预测结果为:

加权结果 = 0.4236 * (-1) + 0.5432 * (-1) + 0.6789 * 1 ≈ 0.6987

最终的预测类别为sign(0.6987) = 1。

相关推荐
月挽清风30 分钟前
代码随想录第七天:
数据结构·c++·算法
小O的算法实验室32 分钟前
2026年AEI SCI1区TOP,基于改进 IRRT*-D* 算法的森林火灾救援场景下直升机轨迹规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小郭团队1 小时前
2_1_七段式SVPWM (经典算法)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·硬件架构·arm·dsp开发
虹科网络安全1 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
充值修改昵称1 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
Deepoch2 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
70asunflower2 小时前
基于锚点(聚类)的LLM微调
机器学习·数据挖掘·聚类
浅念-2 小时前
C语言小知识——指针(3)
c语言·开发语言·c++·经验分享·笔记·学习·算法
Hcoco_me2 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML3 小时前
第九章:EM 算法
人工智能·算法·机器学习