【C++】 list接口以及模拟实现

list介绍

list文档介绍

C++中的list是一个双向链表容器。它允许在任意位置进行快速插入和删除操作,并且能够在常量时间内访问任意元素,并且该容器可以前后双向迭代。

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

list使用

以下为list中一些常见的重要接口。

list的构造

|------------------------------------------------------------------------------------|----------------------------|
| 构造函数(constructor) | 接口说明 |
| list (size_type n, const value_type& val = value_type()) | 构造的list中包含n个值为val的元素 |
| list() | 构造空的list |
| list (const list& x) | 拷贝构造函数 |
| list (InputIterator first, InputIterator last) | 用[first, last)区间中的元素构造list |

void listtest1()
{

    list<int> l1;                         // 构造空的l1
    list<int> l2(4, 100);                 // l2中放4个值为100的元素
    list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3
    list<int> l4(l3);                    // 用l3拷贝构造l4

}

list迭代器

|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 函数声明 | 接口说明 |
| begin+end | 返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器 |
| rbegin+rend | 返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置 |

int main() 
{
    list<int> myList = { 1, 2, 3, 4, 5 };
 
    // 正向迭代器遍历list
    cout << "正向遍历list: ";
    list<int>::iterator itr;
    for (itr = myList.begin(); itr != myList.end(); ++itr) 
    {
        cout << *itr << " ";
    }
    cout << endl;
 
    // 逆向迭代器遍历list
    cout << "逆向遍历list: ";
    list<int>::reverse_iterator ritr;
    for (ritr = myList.rbegin(); ritr != myList.rend(); ++ritr) 
    {
        cout << *ritr << " ";
    }
    cout << endl;
 
    return 0;
}

注意

1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动

2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

list 容量与访问

|-------------------------------------------------------------------|------------------------------|
| 函数声明 | 接口说明 |
| empty | 检测list是否为空,是返回true,否则返回false |
| size | 返回list中有效节点的个数 |
| front | 返回list的第一个节点中值的引用 |
| back | 返回list的最后一个节点中值的引用 |

list修改操作

|----------------------------------------------------------------------------------|------------------------------|
| 函数声明 | 接口说明 |
| push_front | 在list首元素前插入值为val的元素 |
| pop_front | 删除list中第一个元素 |
| push_back | 在list尾部插入值为val的元素 |
| pop_back | 删除list中最后一个元素 |
| insert | 在list position 位置中插入值为val的元素 |
| erase | 删除list position位置的元素 |
| swap | 交换两个list中的元素 |
| clear | 清空list中的有效元素 |

// push_back/pop_back/push_front/pop_front
void TestList3()
{
    int array[] = { 1, 2, 3 };
    list<int> L(array, array + sizeof(array) / sizeof(array[0]));

    // 在list的尾部插入4,头部插入0
    L.push_back(4);
    L.push_front(0);
    PrintList(L);

    // 删除list尾部节点和头部节点
    L.pop_back();
    L.pop_front();
    PrintList(L);
}

// insert /erase 
void TestList4()
{
    int array1[] = { 1, 2, 3 };
    list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));

    // 获取链表中第二个节点
    auto pos = ++L.begin();
    cout << *pos << endl;

    // 在pos前插入值为4的元素
    L.insert(pos, 4);
    PrintList(L);

    // 在pos前插入5个值为5的元素
    L.insert(pos, 5, 5);
    PrintList(L);

    // 在pos前插入[v.begin(), v.end)区间中的元素
    vector<int> v{ 7, 8, 9 };
    L.insert(pos, v.begin(), v.end());
    PrintList(L);

    // 删除pos位置上的元素
    L.erase(pos);
    PrintList(L);

    // 删除list中[begin, end)区间中的元素,即删除list中的所有元素
    L.erase(L.begin(), L.end());
    PrintList(L);
}

// resize/swap/clear
void TestList5()
{
    // 用数组来构造list
    int array1[] = { 1, 2, 3 };
    list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));
    PrintList(l1);

    // 交换l1和l2中的元素
    list<int> l2;
    l1.swap(l2);
    PrintList(l1);
    PrintList(l2);

    // 将l2中的元素清空
    l2.clear();
    cout << l2.size() << endl;
}

list的迭代器失效

大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代 器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

void TestListIterator1()

{

int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };

list<int> l(array, array+sizeof(array)/sizeof(array[0]));

auto it = l.begin();

while (it != l.end())

{

// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给

其赋值

l.erase(it);

++it;

}

}

// 改正

void TestListIterator()

{

int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };

list<int> l(array, array+sizeof(array)/sizeof(array[0]));

auto it = l.begin();

while (it != l.end())

{

l.erase(it++); // it = l.erase(it);

}

}

list模拟实现

#include <assert.h>
namespace xianyushasheng
{
	template<class T>
	struct list_node
	{
		list_node<T>* _next;
		list_node<T>* _prev;
		T _val;

		list_node(const T& val = T())
			:_next(nullptr)
			, _prev(nullptr)
			, _val(val)
		{}
	};

	template<class T, class Ref, class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T, Ref, Ptr> self;
		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		Ref operator*()
		{
			return _node->_val;
		}

		Ptr operator->()
		{
			return &_node->_val;
		}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);

			_node = _node->_next;

			return tmp;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);

			_node = _node->_prev;

			return tmp;
		}

		bool operator!=(const self& it) const
		{
			return _node != it._node;
		}

		bool operator==(const self& it) const
		{
			return _node == it._node;
		}
	};

	template<class T>
	class list
	{
		typedef list_node<T> Node;

	public:
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;

		iterator begin()
		{
			
			return iterator(_head->_next);
		}

		iterator end()
		{
			return _head;
		}

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return _head;
		}

		void empty_init()
		{
			_head = new Node;
			_head->_prev = _head;
			_head->_next = _head;

			_size = 0;
		}

		list()
		{
			empty_init();
		}

		// lt2(lt1)
		list(const list<T>& lt)
		{
			empty_init();

			for (auto& e : lt)
			{
				push_back(e);
			}
		}

		void swap(list<T>& lt)
		{
			std::swap(_head, lt._head);
			std::swap(_size, lt._size);
		}

		list<T>& operator=(list<T> lt)
		{
			swap(lt);

			return *this;
		}

		~list()
		{
			clear();

			delete _head;
			_head = nullptr;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}

			_size = 0;
		}

		void push_back(const T& x)
		{
			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		// pos位置之前插入
		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* newnode = new Node(x);

			prev->_next = newnode;
			newnode->_next = cur;

			cur->_prev = newnode;
			newnode->_prev = prev;

			++_size;

			return newnode;
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;

			delete cur;

			--_size;

			return next;
		}

		size_t size()
		{
			/*size_t sz = 0;
			iterator it = begin();
			while (it != end())
			{
				++sz;
				++it;
			}

			return sz;*/

			return _size;
		}

	private:
		Node* _head;
		size_t _size;
	};

list与vector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不 同,其主要不同如下:

|-----------|------------------------------------------------------------------------|---------------------------------------------|
| | vector | list |
| 底 层 结 构 | 动态顺序表,一段连续空间 | 带头结点的双向循环链表 |
| 随 机 访 问 | 支持随机访问,访问某个元素效率O(1) | 不支持随机访问,访问某个元素 效率O(N) |
| 插 入 和 删 除 | 任意位置插入和删除效率低,需要搬移元素,时间复杂 度为O(N),插入时有可能需要增容,增容:开辟新空 间,拷贝元素,释放旧空间,导致效率更低 | 任意位置插入和删除效率高,不 需要搬移元素,时间复杂度为 O(1) |
| 空 间 利 用 率 | 底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高 | 底层节点动态开辟,小节点容易 造成内存碎片,空间利用率低, 缓存利用率低 |
| 迭 代 器 | 原生态指针 | 对原生态指针(节点指针)进行封装 |
| 迭 代 器 失 效 | 在插入元素时,要给所有的迭代器重新赋值,因为插入 元素有可能会导致重新扩容,致使原来迭代器失效,删 除时,当前迭代器需要重新赋值否则会失效 | 插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代 器失效,其他迭代器不受影响 |
| 使 用 场 景 | 需要高效存储,支持随机访问,不关心插入删除效率 | 大量插入和删除操作,不关心随 机访问 |

相关推荐
DevOpsDojo3 分钟前
HTML语言的数据结构
开发语言·后端·golang
懒大王爱吃狼4 分钟前
Python绘制数据地图-MovingPandas
开发语言·python·信息可视化·python基础·python学习
数据小小爬虫8 分钟前
如何使用Python爬虫按关键字搜索AliExpress商品:代码示例与实践指南
开发语言·爬虫·python
Ritsu栗子13 分钟前
代码随想录算法训练营day35
c++·算法
好一点,更好一点23 分钟前
systemC示例
开发语言·c++·算法
不爱学英文的码字机器26 分钟前
[操作系统] 环境变量详解
开发语言·javascript·ecmascript
martian66530 分钟前
第17篇:python进阶:详解数据分析与处理
开发语言·python
五味香35 分钟前
Java学习,查找List最大最小值
android·java·开发语言·python·学习·golang·kotlin
时韵瑶40 分钟前
Scala语言的云计算
开发语言·后端·golang
卷卷的小趴菜学编程44 分钟前
c++之List容器的模拟实现
服务器·c语言·开发语言·数据结构·c++·算法·list