使用 OpenCV 进行视频中的行人检测

在计算机视觉领域,行人检测是一个重要的研究方向,它在视频监控、自动驾驶、人机交互等领域都有着广泛的应用。本文将介绍如何使用 OpenCV 库来实现视频中的行人检测。

环境准备

首先,我们需要安装 OpenCV 库。可以通过以下命令来安装:

pip install opencv-python

代码实现

以下是实现视频中行人检测的代码:

python 复制代码
import cv2
import os
import numpy as np
import time

def detect_people():
    current_dir = os.path.dirname(os.path.abspath(__file__))
    video_path = os.path.join(current_dir, 'walk2.mp4')
    
    if not os.path.exists(video_path):
        print(f"Error: 视频文件不存在,请确认文件路径: {video_path}")
        return
    
    # 创建HOG检测器
    hog = cv2.HOGDescriptor()
    hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
    
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print("Error: 无法打开视频文件")
        return

    # 设置视频捕获的分辨率
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
    
    # 用于控制检测频率
    frame_count = 0
    detection_interval = 3  # 每隔3帧进行一次检测
    last_boxes = []

    while True:
        start_time = time.time()
        ret, frame = cap.read()
        if not ret:
            break
            
        # 降低分辨率
        frame = cv2.resize(frame, (640, 480))
        
        # 每隔几帧进行一次检测
        if frame_count % detection_interval == 0:
            # 检测人
            boxes, weights = hog.detectMultiScale(frame, 
                                                winStride=(8, 8),
                                                padding=(4, 4),
                                                scale=1.1)
            last_boxes = boxes
        else:
            boxes = last_boxes
            
        # 在图像上绘制边界框
        for (x, y, w, h) in boxes:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
            
        # 显示人数
        people_count = len(boxes)
        cv2.putText(frame, f'People Count: {people_count}', 
                    (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, 
                    (0, 255, 0), 2)
        
        # 计算和显示FPS
        fps = 1.0 / (time.time() - start_time)
        cv2.putText(frame, f'FPS: {int(fps)}', 
                    (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, 
                    (0, 255, 0), 2)
        
        # 显示结果
        cv2.imshow('People Detection', frame)
        
        frame_count += 1
        
        # 减小等待时间,提高帧率
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()

if __name__ == '__main__':
    detect_people()
相关推荐
不惑_8 小时前
通俗理解经典CNN架构:VGGNet
人工智能·神经网络·cnn
没学上了8 小时前
MNIST
人工智能
audyxiao0019 小时前
人工智能顶级期刊PR论文解读|HCRT:基于相关性感知区域的混合网络,用于DCE-MRI图像中的乳腺肿瘤分割
网络·人工智能·智慧医疗·肿瘤分割
零售ERP菜鸟9 小时前
IT价值证明:从“成本中心”到“增长引擎”的确定性度量
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
童话名剑10 小时前
目标检测(吴恩达深度学习笔记)
人工智能·目标检测·滑动窗口·目标定位·yolo算法·特征点检测
木卫四科技10 小时前
【木卫四 CES 2026】观察:融合智能体与联邦数据湖的安全数据运营成为趋势
人工智能·安全·汽车
珠海西格电力15 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
启途AI15 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_115 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客16 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer