Hive基础篇

Hive起源于Facebook,是基于 Hadoop HDFS 分布式文件系统的分布式 数据仓库 架构。它为数据仓库的管理提供了许多功能:数据ETL(抽取、转换和加载)工具、数据存储管理和大型数据集的查询和分析能力。同时Hive还定义了类SQL的语言(HiveQL)。允许用户进行和SQL相似的操作,它可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能。还允许开发人员方便的使用Mapper和Reducer操作,可以将SQL语句转换为MapReduce任务运行。

Hive的特点

Hive作为Hadoop之上的数据仓库处理工具,它所有的数据都是存储在Hadoop兼容的文件系统中。Hive在加载数据过程中不会对数据进行任何的修改,只是将数据移动到HDFS中Hive设定的目录下。因此,Hive不支持对数据的修改和添加,所有的数据都是在加载的时候确定的。

Hive 最大的特点是通过类 SQL 来分析大数据,而避免了写 MapReduce 程序来分析数据,这样使得分析数据更容易。

数据是存储在 HDFS 上的,Hive 本身并不提供数据的存储功能

Hive 是将数据映射成数据库和一张张的表,库和表的元数据信息一般存在关系型数据库上(比如 MySQL)。

数据存储方面:它能够存储很大的数据集,并且对数据完整性、格式要求并不严格。

数据处理方面:不适用于实时计算和响应,使用于离线分析。

Hive体系架构

用户接口:包括CLI,JDBC/ODBC,WebUI等方式。

元数据Metastore:通常存储在关系数据库如mysql,derby中。元数据包括:表名,表所属的数据库,表的列/分区字段,表的属性(是否为外部表等),表的数据所在目录等信息。

Driver:包括解释器、编译器、优化器、执行器。HiveQL查询语句从词法分析。语法分析、编译、优化以及查询计划生成。生成的查询计划存储在HDFS中,并在后面的MapReduce中进行调用执行。

解析器:将SQL转换成抽象的语法树AST。

编译器:将抽象语法树AST编译生成逻辑执行计划。

优化器:将逻辑执行计划进行优化。

执行器:把逻辑执行计划转换成可以运行的物理执行计划。

Hadoop:使用HDFS进行存储,利用MapReduce进行计算。

Hive运行机制

编写HiveQL,并提交;

Hive解析查询语句,并生成查询计划;

Hive将查询计划转化为MR作业;

运行MR作业,得到最终结果。

Hive与关系数据库的区别

相关推荐
Microsoft Word5 小时前
Hadoop架构再探讨
大数据·hadoop·架构
吴爃5 小时前
了解Hadoop
大数据·hadoop·分布式
IvanCodes12 小时前
七、Hadoop 历史追踪、数据安全阀与 MapReduce初体验
大数据·hadoop·hdfs·mapreduce·yarn
爱编程的王小美12 小时前
本地MySQL连接hive
数据库·hive·mysql
麻芝汤圆17 小时前
深入探索 Spark RDD 行动算子:功能解析与实战应用
大数据·hadoop·分布式·spark·mapreduce
widder_20 小时前
大数据处理利器:Hadoop 入门指南
大数据·hadoop·分布式
chat2tomorrow1 天前
如何使用 QuickAPI 推动医院数据共享 —— 基于数据仓库场景的实践
大数据·数据仓库·人工智能·医院·sql2api
火龙谷1 天前
【hadoop】案例:Sqoop迁移仓库数据
hive·hadoop·sqoop
my_realmy2 天前
基于 Spark 和 Hadoop 的空气质量数据分析与预测系统
hadoop·数据分析·spark