浅谈人工智能之基于容器云进行图生视频大模型搭建

浅谈人工智能之基于容器云进行图生视频大模型搭建

根据之前我们所讲过的内容:
文生图
文生视频

我们继续讲解图生视频大模型搭建。

引言

随着深度学习技术的不断发展,图生视频(image-to-video)大模型成为了计算机视觉和自然语言处理领域的一个研究热点。图生视频模型可以根据输入的文本描述生成高质量的视频,广泛应用于艺术创作、广告设计、虚拟现实等领域。本文将介绍如何搭建一个基于iic/Image-to-Video的文生视频大模型。

模型效果展示

我们首先看一下我们对搭建好的模型的效果进行展示,我们输入的图片如下:
## 环境搭建

基于上一篇文生图的模型搭建,我们进行文生视频的搭建。

第一步:依赖安装

bash 复制代码
pip install modelscope==1.8.4
pip install xformers==0.0.20
pip install torch==2.0.1
pip install open_clip_torch>=2.0.2
pip install opencv-python-headless
pip install opencv-python 
pip install einops>=0.4
pip install rotary-embedding-torch
pip install fairscale 
pip install scipy
pip install imageio
pip install pytorch-lightning
pip install torchsde

第二步:模型下载调用

python 复制代码
from modelscope.pipelines import pipeline
from modelscope.outputs import OutputKeys

pipe = pipeline(task="image-to-video", model='damo/Image-to-Video', model_revision='v1.1.0', device='cuda:0')

# IMG_PATH: your image path (url or local file)
output_video_path = pipe("/root/image.jpg", output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO]
print(output_video_path)

第三步:大概率情况下会提示没有安装ffmpeg提示

bash 复制代码
2024-11-26 17:10:12,990 - modelscope - ERROR - Save Video Error with /bin/sh: 1: ffmpeg: not found
2024-11-26 17:10:12,996 - modelscope - WARNING - task image-to-video output keys are missing

第四步:安装ffmpeg

bash 复制代码
sudo apt update
sudo apt install ffmpeg

第五步:再次跑py脚本,我就可以获得对应的输出视频了,如果上述跑脚本的时候提示缺少对应依赖,根据提示信息再对对应依赖进行安装部署。

相关推荐
weex_2133444 分钟前
WEEXNews「昨夜今晨重要资讯,11月27日
人工智能
ericliu20171 小时前
EfficientQAT: 大型语言模型的高效量化感知训练
人工智能·语言模型·自然语言处理
EasyDSS1 小时前
音视频流媒体直播/点播系统EasyDSS互联网视频云平台介绍
音视频·无人机·视频转码·视频推流·视频推拉流
weixin_690654741 小时前
龙迅#LT6912适用于HDMI2.0转HDMI+LVDS/MIPI,分辨率高达4K60HZ,支持音频和HDCP2.2
音视频·信号处理
Yanbin_Q1 小时前
用 llama.cpp 体验 Meta 的 Llama AI 模型
人工智能·llama
跳跳的小古风1 小时前
vue3.0 根据富文本html页面生成压缩包(含视频在线地址、图片在线地址、前端截图、前端文档)
前端·html·音视频
老艾的AI世界2 小时前
AI让照片跳舞,人人都能是舞王!Swan下载介绍
人工智能·深度学习·神经网络·目标检测·机器学习·ai·图像识别·ai生成视频·ai跳舞·ai视频生成
Dipeak数巅科技2 小时前
通过数巅能源大模型降本增效
大数据·数据库·人工智能·数据分析·能源
电子工程师UP学堂2 小时前
电子应用设计方案-30:智能扫地机器人系统方案设计
网络·人工智能·单片机·嵌入式硬件·机器人
山川而川-R2 小时前
yolov8的深度学习环境安装(cuda12.4、ubuntu22.04)
人工智能·深度学习·yolov8