【大数据学习 | Spark-SQL】关于RDD、DataFrame、Dataset对象

1. 概念:

RDD:

弹性分布式数据集;

DataFrame:

DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这样的数据集可以用SQL查询。DataFrame是不可变的,即一旦创建,就不能修改其内容。

DataFrame 是 DataSet[Row]

DataSet:

简单的说,DataSet和DataFrame的区别就是,DataSet会在编译阶段就进行类型检查 ,而DataFrame在运行阶段才会类型检查。

Dataset是一个强类型 的特定领域的对象,Dataset也被称为DataFrame的类型化视图,**这种DataFrame是Row类型的Dataset,即Dataset[Row]。**Dataset结合了DataFrame的优化和RDD的类型安全。Dataset提供了编译时类型检查(而DataFrame不会,DataFrame只会在运行阶段才会检查类型),确保数据在编译阶段就符合预期的类型。

dataset是dataFrame的升级版对象,dataframe是一个传统的sql编程对象,如果要想使用dataframe进行灵活开发的比较复杂。

dataset和dataFrame是一个类别的对象,都是可以进行sql查询数据的,并且可以支持rdd上面的方法。

当我们需要对一个表对象进行二次处理的话建议大家转换为dataset而不是dataframe。

Scala 复制代码
package com.hainiu.spark

import org.apache.spark.sql.{Dataset, SparkSession}

object TestDSAndDF {
  def main(args: Array[String]): Unit = {
    val session = SparkSession.builder().master("local[*]").appName("test").getOrCreate()
    import session.implicits._
    val ds: Dataset[String] = session.read.textFile("file:///headless/workspace/spark/data/a.txt")
    ds.map(t=>{
      val strs = t.split(" ")
      (strs(0), strs(1), strs(2), strs(3))
    })

//    val df = session.read.format("org.apache.spark.sql.execution.datasources.v2.text.TextDataSourceV2")
//      .load("file:///headless/workspace/spark/data/a.txt")
//    
//    val ds: Dataset[(String, String, String, String)] = df.map(row => {
//      val line = row.getAs[String]("value")
//      val strs = line.split(" ")
//      (strs(0), strs(1), strs(2), strs(3))
//    })
  }
}

2. 三者之间的转换

Scala 复制代码
  val ds: Dataset[String] = session.read.textFile("file:///headless/workspace/spark/data/a.txt")
    ds.map(t=>{
      val strs = t.split(" ")
      (strs(0), strs(1), strs(2), strs(3))
    })

    val df1 = ds.toDF("id","name","age","gender")

    val df: Dataset[Row] = session.read.format("org.apache.spark.sql.execution.datasources.v2.text.TextDataSourceV2")
      .load("file:///headless/workspace/spark/data/a.txt")

    val rdd = session.sparkContext.textFile("file:///headless/workspace/spark/data/a.txt")
    rdd.toDS()
    rdd.toDF()

    df.rdd
    ds.rdd
相关推荐
汽车仪器仪表相关领域30 分钟前
全自动化精准检测,赋能高效年检——NHD-6108全自动远、近光检测仪项目实战分享
大数据·人工智能·功能测试·算法·安全·自动化·压力测试
大厂技术总监下海31 分钟前
根治LLM胡说八道!用 Elasticsearch 构建 RAG,给你一个“有据可查”的AI
大数据·elasticsearch·开源
石像鬼₧魂石2 小时前
22端口(OpenSSH 4.7p1)渗透测试完整复习流程(含实战排错)
大数据·网络·学习·安全·ubuntu
TDengine (老段)3 小时前
TDengine Python 连接器进阶指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
数据猿5 小时前
【金猿CIO展】如康集团CIO 赵鋆洲:数智重塑“顶牛”——如康集团如何用大数据烹饪万亿肉食产业的未来
大数据
zxsz_com_cn7 小时前
设备预测性维护的意义 工业设备预测性维护是什么
大数据
samLi06208 小时前
【数据集】中国杰出青年名单数据集(1994-2024年)
大数据
成长之路5148 小时前
【数据集】分地市旅游收入数据集(2000-2024年)
大数据·旅游
大厂技术总监下海9 小时前
用户行为分析怎么做?ClickHouse + 嵌套数据结构,轻松处理复杂事件
大数据·数据结构·数据库
大厂技术总监下海9 小时前
大数据生态的“主动脉”:RocketMQ 如何无缝桥接 Flink、Spark 与业务系统?
大数据·开源·rocketmq