MATLAB神经网络(五)——R-CNN视觉检测

5.1 目标分类、检测与分割

在计算机视觉领域,目标分类、检测与分割是常用计数。三者的联系与区分又在哪呢?目标分类是解决图像中的物体是什么的问题;目标检测是解决图像中的物体是什么,在哪里的问题;目标分割时将目标和背景分离出来,找出目标的轮廓线。

衡量目标检测性能优劣的指标一方面要体现分类特性(准确度、精确率、召回率),另一方面要体现其定位特征,对于定位特征,通常用IoU来评价。交并比用来计算两个边界框交集和并集和并集之比,它衡量了两个边界框的重叠程度,如果重叠程度越高,检测越准确

5.2 R-CNN目标检测算法原理与实现

R-CNN利用候选区域+卷积神经网络的方法,解决了图像中的定位问题,对于小规模数据集的问题,R-CNN利用AlexNet在ImageNet上预训练好的模型,基于迁移学习的原理,对参数进行微调。

第一步:首先会有很多候选框区域,这些区域是由图像分割的方法得到的原始区域然后进行合并,得到的一个层次化的区域,这些区域内就可能存在需要的内容

第二步:因为使用的为AlexNet,上一章我们很详细的说明了。将我们的候选区域压缩到 227*227,输入到神经网络中获得4096维的矩阵,每个候选区域都有一个矩阵。

第三步:判断类别,候选框个数*4096特征与20哥SVM支持向量机组成的全职矩阵 4096*20,获得 2000 * 20维矩阵,分别对上述2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框。

SVM是线性分类器,相当于绘出一条线,让两组不同的数据距离他的距离最远。

最后修正这个框,得到得分最高的框

基于上面的过程,下面给出步骤:

首先通过Image Labeler App构建R-CNN目标检测器,并导入图片

并利用标签对图像进行标志

标签完成后导出到工作空间内

Matlab 复制代码
trainingdate=objectDetectorTrainingData(gTruth);

objectDetectorTrainingData函数可以将我们上面导出的图片转换为用于训练的数据,就可以导入网络进行使用了,给出完整代码如下:

Matlab 复制代码
%%  进行数据类型的转化
trainingdate=objectDetectorTrainingData(gTruth);
%%  导入网络
net=alexnet;
%%  设置训练策略参数并进行训练
% 设置训练策略参数
options = trainingOptions('sgdm', ...
        'MiniBatchSize', 128, ...
        'InitialLearnRate', 1e-3, ...
        'LearnRateSchedule', 'piecewise', ...
        'LearnRateDropFactor', 0.1, ...
        'LearnRateDropPeriod', 100, ...
        'MaxEpochs',10, ...
        'Verbose', true);

% 训练网络.
    rcnn = trainRCNNObjectDetector(trainingdate, net, options, ...
    'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.5 1]) ;

%%  显示测试结果
% 读取数据
I = imread('E:\MATLAB_DeepLearning\chapter_9\stop_sign_ch\slowtest.jpg');
% 用检测器测试
[bboxes,scores] = detect(rcnn,I);
% 标注测试结果并显示
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

效果如下:

111

相关推荐
IT古董4 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(3)决策树回归模型(Decision Tree Regression)
神经网络·机器学习·回归
24毕业生从零开始学ai4 小时前
长短期记忆网络(LSTM):让神经网络拥有 “持久记忆力” 的神奇魔法
rnn·神经网络·lstm
中杯可乐多加冰5 小时前
【AI落地应用实战】AIGC赋能职场PPT汇报:从效率工具到辅助优化
人工智能·深度学习·神经网络·aigc·powerpoint·ai赋能
Blossom.1188 小时前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint8 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
IT古董14 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
鱼摆摆拜拜17 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
点我头像干啥1 天前
用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
pytorch·深度学习·神经网络
IT古董1 天前
【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(2)神经网络整体结构
pytorch·神经网络·算法
机器学习之心1 天前
经典灰狼算法+编码器+双向长短期记忆神经网络,GWO-Transformer-BiLSTM多变量回归预测,作者:机器学习之心!
神经网络·bilstm·gwo-transformer