【论文笔记】A Token-level Contrastive Framework for Sign Language Translation

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : A Token-level Contrastive Framework for Sign Language Translation
作者 : Biao Fu, Peigen Ye, Liang Zhang, Pei Yu, Cong Hu, Yidong Chen, Xiaodong Shi
发表 : ICASSP 2023
arXiv : https://arxiv.org/abs/2204.04916

摘要

手语翻译(SLT)是一种有望弥合聋人与听力人士之间沟通鸿沟的技术。

最近,研究人员采用了需要大规模语料库进行训练的神经机器翻译(NMT)方法来实现SLT。

然而,公开可用的SLT语料库非常有限,这导致了token表示的崩溃和生成token的不准确。

为了缓解这一问题,我们提出了ConSLT,这是一种新的针对手语翻译的token级对比学习框架,通过将token级对比学习融入SLT解码过程来学习有效的token表示。

具体来说,ConSLT在解码过程中将每个token及其由不同dropout掩码生成的对应token视为正对,然后随机从不在当前句子中的词汇中抽取K个token来构建负例。

我们在两个基准(PHOENIX14T和CSL-Daily)上进行了全面的实验,包括端到端和级联设置。

实验结果表明,ConSLT比强大的基线实现了更好的翻译质量。

方法

对于每个token,我们通过不同的dropout噪声构建其正例,并从候选token集 C \mathcal{C} C 中随机采样 K K K 个token作为负例,其中 C ⊂ V ∖ S \mathcal{C} \subset \mathcal{V} \setminus \mathcal{S} C⊂V∖S 表示在词汇表 V \mathcal{V} V 中但不在当前句子 S \mathcal{S} S 中的token。

实验

主实验

消融实验

w/o CL 表示没有对比学习方法,S-CL 表示句子级对比学习方法,T-CL 表示token级对比学习方法。cos 表示使用余弦相似度作为距离度量,KL 表示使用KL散度作为距离度量。

总结

在这篇论文中,我们从表示学习的角度提供了一种缓解SLT低资源问题的新的见解。

我们引入了ConSLT,这是一种针对SLT的基于token的对比学习框架,旨在通过将当前句子之外的词汇中的token推远来学习有效的token表示。

值得一提的是,ConSLT可以应用于不同的模型结构。

我们还探讨了各种对比策略的影响,并提供了细粒度分析来解释我们的方法是如何工作的。

实验结果表明,对比学习可以显著提高SLT的翻译质量。

在未来,我们将进一步研究手语视频和口语文本之间的跨模态关系。

相关推荐
layneyao3 分钟前
大语言模型(LLM)的Prompt Engineering:从入门到精通
人工智能·语言模型·prompt
CV-杨帆37 分钟前
论文阅读:2025 arxiv Reward Shaping to Mitigate Reward Hacking in RLHF
论文阅读
CV-杨帆39 分钟前
论文阅读:2024 ACL ArtPrompt: ASCII Art-based Jailbreak Attacks against Aligned LLMs
论文阅读
边缘计算社区1 小时前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发
飞哥数智坊1 小时前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse1 小时前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao1 小时前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
被放养的研究生1 小时前
ChatGPT、deepseek、豆包、Kimi、通义千问、腾讯元宝、文心一言、智谱清言代码能力对比
语言模型
海特伟业2 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
CareyWYR2 小时前
每周AI论文速递(250421-250425)
人工智能