【论文笔记】A Token-level Contrastive Framework for Sign Language Translation

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : A Token-level Contrastive Framework for Sign Language Translation
作者 : Biao Fu, Peigen Ye, Liang Zhang, Pei Yu, Cong Hu, Yidong Chen, Xiaodong Shi
发表 : ICASSP 2023
arXiv : https://arxiv.org/abs/2204.04916

摘要

手语翻译(SLT)是一种有望弥合聋人与听力人士之间沟通鸿沟的技术。

最近,研究人员采用了需要大规模语料库进行训练的神经机器翻译(NMT)方法来实现SLT。

然而,公开可用的SLT语料库非常有限,这导致了token表示的崩溃和生成token的不准确。

为了缓解这一问题,我们提出了ConSLT,这是一种新的针对手语翻译的token级对比学习框架,通过将token级对比学习融入SLT解码过程来学习有效的token表示。

具体来说,ConSLT在解码过程中将每个token及其由不同dropout掩码生成的对应token视为正对,然后随机从不在当前句子中的词汇中抽取K个token来构建负例。

我们在两个基准(PHOENIX14T和CSL-Daily)上进行了全面的实验,包括端到端和级联设置。

实验结果表明,ConSLT比强大的基线实现了更好的翻译质量。

方法

对于每个token,我们通过不同的dropout噪声构建其正例,并从候选token集 C \mathcal{C} C 中随机采样 K K K 个token作为负例,其中 C ⊂ V ∖ S \mathcal{C} \subset \mathcal{V} \setminus \mathcal{S} C⊂V∖S 表示在词汇表 V \mathcal{V} V 中但不在当前句子 S \mathcal{S} S 中的token。

实验

主实验

消融实验

w/o CL 表示没有对比学习方法,S-CL 表示句子级对比学习方法,T-CL 表示token级对比学习方法。cos 表示使用余弦相似度作为距离度量,KL 表示使用KL散度作为距离度量。

总结

在这篇论文中,我们从表示学习的角度提供了一种缓解SLT低资源问题的新的见解。

我们引入了ConSLT,这是一种针对SLT的基于token的对比学习框架,旨在通过将当前句子之外的词汇中的token推远来学习有效的token表示。

值得一提的是,ConSLT可以应用于不同的模型结构。

我们还探讨了各种对比策略的影响,并提供了细粒度分析来解释我们的方法是如何工作的。

实验结果表明,对比学习可以显著提高SLT的翻译质量。

在未来,我们将进一步研究手语视频和口语文本之间的跨模态关系。

相关推荐
OpenBayes1 分钟前
教程上新丨Deepseek-OCR 以极少视觉 token 数在端到端模型中实现 SOTA
人工智能·深度学习·机器学习·ocr·大语言模型·文本处理·deepseek
开发者导航29 分钟前
【开发者导航】轻量可微调且开源的大语言模型家族:LLaMA
语言模型·开源·llama
蓝海星梦30 分钟前
【论文笔记】R-HORIZON:重塑长周期推理评估与训练范式
论文阅读·人工智能·深度学习·自然语言处理·大型推理模型
张较瘦_30 分钟前
[论文阅读] 软件工程 | 解决Java项目痛点:DepUpdater如何平衡依赖升级的“快”与“稳”
java·开发语言·论文阅读
0x21137 分钟前
[论文阅读]Friend or Foe: How LLMs‘ Safety Mind Gets Fooled by Intent Shift Attack
论文阅读
Valueyou2438 分钟前
论文阅读——CenterNet
论文阅读·python·opencv·目标检测·计算机视觉
da_vinci_x40 分钟前
Substance 3D 材质流:AI 快速生成与程序化精修
人工智能·游戏·3d·材质·设计师·技术美术·游戏美术
aneasystone本尊1 小时前
重温 Java 21 之密钥封装机制 API
人工智能
欢聚赢销CRM1 小时前
从“各自为战“到“数据协同“:销采一体化CRM正在重构供应链竞争力
大数据·人工智能·重构·数据分析
IT_陈寒1 小时前
Python 3.12 新特性实战:10个让你代码更优雅的隐藏技巧
前端·人工智能·后端