【推荐算法】推荐系统的评估

这篇文章是笔者阅读《深度学习推荐系统》第五章推荐系统的评估的学习笔记,在原文的基础上增加了自己的理解以及内容的补充,在未来的日子里会不断完善这篇文章的相关工作。

文章目录

离线评估

在离线环境中利用已有的数据划分训练集和测试集对模型进行评估

划分数据集方法

机器学习常用划分方法:Holdout法、交叉验证、留一法、自助法

客观评价指标

机器学习模型常用指标:准确率、精确率、召回率、均方根误差、对数损失

​ 对于推荐模型,点击率的预测(++预测模型++ )正确与否并不是最终目标,最重要的是输出一个用户感兴趣的物品列表(++排序模型++),排序模型是根据模型的输出概率对兴趣物品排序,因此应该采用适合评估排序序列的指标来评估模型。

P-R曲线
  • why work(能够更关注正样本的分数)

P-R曲线是精确率-查全率曲线,精确率和查全率两个指标都是关于正样本的相关计算,当阈值设置高时,查全率低,此时得分越高的物品被优先推荐,而不是简单的实现二分类,因此,P-R曲线更适合排序模型。

  • 参考学习链接:
ROC/AUC
  • why work

因为AUC描述的物理意义是在样本中随机抽取一个正样本和负样本,正样本的得分大于负样本得分的概率,反映了模型区分正负样本的能力,通过ROC的绘制避免了单一阈值达赖的偏差,此外,AUC对正负样本的比例不敏感(因为是随机各抽一个)

mAP
NDCG

!NOTE

编者提到了在真正的离线实验中并不需要选择过多的评价指标,更重要的是快速定位,排除不可行的思路。

A/B 测试

又称为"分桶测试"、"分流测试",设置单一变量,通过实验组A与对照组B进行对比评估,是模型上线前的最后一道测试,与离线测试不同,离线测试无法消除有偏数据的影响,并且无法还原实际工程环境(数据丢失、网络延迟)

分桶原则

  • 层与层之间正交:层与层之间的对照实验时独立的,不相互影响;

  • 同层之间互斥:同一个数据用于不同的实验组;

评估指标

与离线测试不同,线上测试能够直接计算业务的核心指标,因此更注重对点击率、转化率等实际业务之表的对比。

存在的问题

  1. A/B测试占用了过多的资源,当新提出的模型推荐效果差时还会对用户造成损害;
  2. 分组用户样本分布不平衡

Interleaving

Interleaving是一种快速线上评估方法,在大量初始算法中筛选出work的算法再进行A/B测试,解决A/B测试在测试时样本可能分布不平衡的问题,对相同用户给与两种方案,看用户更喜欢哪种(类似于chatgpt有时会给两种方案看用户更喜欢哪种)

缺点

  1. 需要大量的辅助性数据标识;
  2. 只能对算法的相对评估;

灵敏度对比

需要多少样本才可以评估不同算法的优劣性,图中可以看出, Interleaving 方法利用 1 0 3 10^3 103个样本就能判定算法 A是否比 B 好,而 A/B 测试则需要 1 0 5 10^5 105个样本才能将 p-value 降到 5%以下。这就意味着利用一组 A/B 测试的资源,可以做 100 组 Interleaving 实验,这无疑极大地加强了线上测试的能力。

相关推荐
寂静山林7 分钟前
UVa 10228 A Star not a Tree?
算法
爱喝白开水a7 分钟前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void14 分钟前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG19 分钟前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
Neverfadeaway19 分钟前
【C语言】深入理解函数指针数组应用(4)
c语言·开发语言·算法·回调函数·转移表·c语言实现计算器
生命是有光的23 分钟前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型26 分钟前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
科技新知39 分钟前
大厂AI各走“开源”路
人工智能·开源
字节数据平台41 分钟前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎
TGITCIC42 分钟前
LLaVA-OV:开源多模态的“可复现”革命,不只是又一个模型
人工智能·开源·多模态·ai大模型·开源大模型·视觉模型·大模型ai