ultralytics-YOLOv11的目标检测解析

1. Python的调用

python 复制代码
from ultralytics import YOLO
import os
def detect_predict():
    model = YOLO('../weights/yolo11n.pt')
    print(model)
    results = model('../ultralytics/assets/bus.jpg')
    if not os.path.exists(results[0].save_dir):
        os.makedirs(results[0].save_dir)
    for result in results:
        filename = result.path.split("\\")[-1]
        filedir = result.save_dir + "\\" + filename
        result.save(filedir)

运行结果:

模型训练,基于coco8数据:

python 复制代码
from ultralytics import YOLO
def detect_train():
    model = YOLO("yolo11l.pt")  # Load a model
    train_results = model.train(   # Train the model
        data="coco8.yaml",  # path to dataset YAML
        epochs=100,  # number of training epochs
        imgsz=640,  # training image size
        device="0",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
    )
    metrics = model.val()  # Evaluate model performance on the validation set
    results = model("../ultralytics/assets/bus.jpg")  # Perform object detection on an image
    results[0].show()
    # Export the model to ONNX format
    path = model.export(format="onnx")  # return path to exported model

2. 网络结构图

图2-1 yolo11-detection网络结构图

其中depth参数控制C3k2,即C3k2_X中,X*depth.

3. 损失函数

3.1 损失函数的定位

ultralytics中损失函数定位:ultralytics.engine.train()-->ultralytics.engine.trainer.train()--> ultralytics.engine.trainer._do_train(),其中以下为调用损失位置:

即模型的前向推理过程触发损失函数计算。同debug到该处,获取模型名称如下:

DetectionModel类中的函数如下:

其中DetectionModel函数继承自BaseModel,损失调用如下

经debug调用self.loss函数,其中ultralytics.utls.loss.v8DetectionLoss函数是具体损失计算位置

self.criterion(preds, batch)形式调用,即v8DetectionLoss类中的__call__函数,具体如下

3.2 损失函数具体分析

(1) 前向推理与anchor构造

前向处理分成三个尺度: ,其中B表示batch_size,

。通过debug模式三个尺度生成的list如下:

需要把三个尺度分成预测类别(80个类别)和检测框,其中 ,具体如下:

以三个尺度构造anchor,其中以每个方格中心点作为anchor_point,三个尺度总共有8400个anchor_point,如图3-1所示。通过debug获取全部anchor_points与anchor_points对应的stride_tensor,如下:

图3-1 anchor_point的构造

(2) GT目标框与预测框构建

GT目标框的构建,包括batch_idx,cls,bboxes,得到 ,其中n表示batch中的标注的目标框数量,6=1+4+1。

self.preprocess函数的作用是输出 ,构建B个 的矩阵,其中 表示B个图像中标注框最大的数量,不足最大数量的行设置为全0,5表示cls+bbox

预测框的构建主要是函数bbox_decode,即对前向推理的pred_distri根据anchor_points对pred_distri做解码操作。解码时,pred_distri由 变为 ,具体是16个预测值做softmax后与[0,1,2,...,15]做矩阵乘法,如下

然后pred_dist得到的是左上角、右下角距离每个anchor_point中心点的距离,通过dist2bbox转换为xyxy形式的坐标,如下所示。anchor_points为中心点的坐标,最后得到预测bboxes。

(3) 任务分配器

任务分配器即ultralytics.utils.tal.TaskAlignedAssigner类,主要实现以该类的forward函数。其中主要的函数为get_pos_mask、select_highest_overlaps、get_targets。

get_pos_mask:获取anchor预测真实框的mask

python 复制代码
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
    """Get in_gts mask, (b, max_num_obj, h*w)."""
    mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)  # mask_in_gts:4x7x8400
    # Get anchor_align metric, (b, max_num_obj, h*w)
    align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
    # Get topk_metric mask, (b, max_num_obj, h*w)
    mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())
    # Merge all mask to a final mask, (b, max_num_obj, h*w)
    mask_pos = mask_topk * mask_in_gts * mask_gt
    return mask_pos, align_metric, overlaps

select_candidates_in_gts函数的主要作用是根据真实框lr、br距离anchor_point的距离筛选anchor_points。其中筛选的条件是四个距离值大于1e-9,如图3-2所示。该函数输出如下:

其中mask_in_gts表示0或1的矩阵。

图3-2 有效anchor_point的筛选

get_box_metrics主要是计算预测框与一个batch的GT框的CIOU,以及一个batch的GT类别位置处预测score,通过这两个计算得到align_metric。其中该函数的mask_gt的计算由select_candidates_in_gts获取的mask_in_gts与一个batch的mask_gt相乘得到,mask_in_gts: ,mask_gt: 。然后得到新的mask_gt: ,如下所示,后续的score与box框的筛选都通过新mask_gt获取。

构造batch_idx与cls_idx,如下

根据构造的idx从pd_scores中获取mask_gt相应位置值,然后赋值给bbox_scores,mask_gt的其余部分为0,如下

分别扩展pd_bboxes、gt_bboxes,使其两则维度相同,然后通过新mask_gt筛选预测框与真实框,通过CIOU计算overlaps,如下

最后计算align_metric,计算公式如下

alpha=0.5,beta=6.0。

select_topk_candidates由align_metric筛选top10候选mask_topk。其中该函数的输入topk_mask由mask_gt: 复制topk中的k=10份得到topk_mask: 。筛选align_metric中top10的值与idx,如下

其中topk_idxs的值域为[0,8400),topk_metrics,topk_idxs,topk_mask尺寸都为 。返回mask_topk的尺寸为

最后merge所有的mask返回为mask_pos,其中mask_topk、mask_in_gts大小为 ,mask_gt大小为 ,具体代码如下

select_highest_overlaps :当一个anchor 分配多个检测框时,选择overlap 最大的

python 复制代码
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
    """Select anchor boxes with highest IoU when assigned to multiple ground truths."""
    # Convert (b, n_max_boxes, h*w) -> (b, h*w)
    fg_mask = mask_pos.sum(-2)
    if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes
        mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1)  # (b, n_max_boxes, h*w)
        max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)
        is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
        is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
        mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float()  # (b, n_max_boxes, h*w)
        fg_mask = mask_pos.sum(-2)
    # Find each grid serve which gt(index)
    target_gt_idx = mask_pos.argmax(-2)  # (b, h*w)
    return target_gt_idx, fg_mask, mask_pos

mask_pos: ,overlap: ,mask_multi_gts获取一个anchor预测多个gt框的位置,max_overlaps_idx每个anchor中overlap值最大的位置获取,通过torch.where更新mask_pos,即一个anchor分配多个框时,选择overlap最大GT,分配到该anchor上。最后返回fg_mask(anchor中分配GT框的mask)、target_gt_idx(anchor中分配GT框的idx)、

尺寸大小的mask_pos。

get_targets

python 复制代码
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
    # Assigned target labels, (b, 1)
    batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
    target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w)
    target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)  # 获取anchor分配GT框的类别
    # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
    target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx]  # 获取anchor分配GT框的坐标bbox
    # Assigned target scores
    target_labels.clamp_(0)
    # 10x faster than F.one_hot()
    target_scores = torch.zeros(
        (target_labels.shape[0], target_labels.shape[1], self.num_classes),
        dtype=torch.int64,
        device=target_labels.device,
    )  # (b, h*w, 80)
    target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
    fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)
    target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)  # 通过fg_scores_mask限制target_scores
    return target_labels, target_bboxes, target_scores

target_gt_idx是[0,n_max_boxes-1]的值,更新索引值,不同batch_idx索引唯一,如下

构造one-hot的target_scores,每个anchor都是one-hot,长度为80,如下

最后返回 的target_labels, 的target_bboxes, 大小one-hot的target_scores。

任务分配器最后步骤是做归一化处理,如下所示。

python 复制代码
# Normalize
align_metric *= mask_pos
pos_align_metrics = align_metric.amax(dim=-1, keepdim=True)  # b, max_num_obj
pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True)  # b, max_num_obj
# align_metric/pos_align_metrics值域[0,1],尺寸为b, max_num_obj, 8400
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) #b,8400,1
target_scores = target_scores * norm_align_metric  # [b,8400,80] * [b,8400,1]

最终TaskAlignedAssigner返回五个参数,如下

(4) 损失计算

Cls loss通过BCE计算,pred_scores与target_scores的尺寸为 ,其中BCE的计算公式如下:

Box loss计算loss_iou与loss_dfl,具体的计算如下

python 复制代码
# Bbox loss
if fg_mask.sum():
    target_bboxes /= stride_tensor  # [b,8400,4] / [8400,1]
    loss[0], loss[2] = self.bbox_loss(  # 计算loss_iou, loss_dfl
        pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
    )
loss[0] *= self.hyp.box  # box gain = 7.5
loss[1] *= self.hyp.cls  # cls gain = 0.5
loss[2] *= self.hyp.dfl  # dfl gain = 1.5
return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

bbox_loss中的计算代码如下,其中包括loss_iou与loss_dfl两部分。

python 复制代码
weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)  # 计算权重,target_scores:b,8400,80, fg_mask:b,8400
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)  # 在fg_mask下,计算真实框与预测框CIoU
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum  # iou损失计算

# DFL loss
if self.dfl_loss:
    target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1)  # box转换成距中心点距离
# pred_dist[fg_mask]:210x64-->840x16
    loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight
    loss_dfl = loss_dfl.sum() / target_scores_sum  # 与iou损失一样,除以target_scores_sum
else:
    loss_dfl = torch.tensor(0.0).to(pred_dist.device)

return loss_iou, loss_dfl

然后DFLoss如下,主要是对预测距离与真实距离做交叉熵,并加权平均计算值。其中左右权重的计算遵循距离值越大,权重就越小的原则。

python 复制代码
target = target.clamp_(0, self.reg_max - 1 - 0.01)  # n, 4
tl = target.long()  # target left 真实框向左取整
tr = tl + 1  # target right  真实框向右取整
wl = tr - target  # weight left  向右取整-目标得到左边的权重
wr = 1 - wl  # weight right  向左取整-目标得到右边的权重
return (  # 左右预测距离与真实距离做交叉熵计算,并乘以权重
    F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl
    + F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
).mean(-1, keepdim=True)
相关推荐
才不做选择20 小时前
基于 YOLOv8 的部落冲突 (Clash of Clans) 目标检测系统
人工智能·python·yolo·目标检测
棒棒的皮皮1 天前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
吃人陈乐游刘2 天前
08实战经验yoloV8部署(2026年01月)
yolo
思通数科x2 天前
传统监控事后难追责?AI 违规识别智能系统让响应时间缩短
图像处理·人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理
熬夜不洗澡2 天前
如何在pycharm中使用Yolo
ide·yolo·pycharm
智驱力人工智能2 天前
从占座到智座 非授权人员座位占用监测系统的产品化思考与实践 椅位占用检测 非员工座位占用AI预警 边缘计算非授权座位识别设备
人工智能·opencv·算法·安全·yolo·计算机视觉·边缘计算
AI浩2 天前
SPDC-YOLO:基于改进YOLOv8的高效无人机航拍图像小目标检测网络
yolo·目标检测·无人机
棒棒的皮皮2 天前
【深度学习】YOLO本地环境搭建
人工智能·深度学习·yolo·计算机视觉
怀旧诚子2 天前
将原始的 ONNX 模型转 成 RKNN 模型失败
yolo
数据分享者2 天前
原创大规模无人机检测数据集:11998张高质量图像,支持YOLOv8、COCO、TensorFlow多格式训练,涵盖飞机、无人机、直升机三大目标类别
算法·yolo·数据分析·tensorflow·无人机