论文精读:YOLO-UniOW: Efficient Universal Open-World Object Detection

文章目录


前言

本文介绍一篇来自Tencent的开放词汇和世界检测结合的论文:Yolo-uniow开源地址

1、出发点

本篇论文相当于开辟了一个新任务,将开放词汇检测世界检测融合到一个任务:在给定一系列text prompt后,除了检测出对应单词的边界框,还要将其余未知的物体检测为"Unknown"。贴一张论文示例图:


2、方法

底下是论文总体结构图,在yolo-world基础上衍生出来的,总体来看结构比较简单,Detector用到的是yolov10,包含两个assign head: one2many和one2one;TextEncoder启用了LoRA微调,然后设计了一个通配符Wildcard Learning策略(其实就是object类别的嵌入向量),来挖掘Unknown物体。下面将逐一介绍。

2.1.符号说明

上述三个标黄的公式其实就是论文要实现功能。其中 c k c_k ck表示已知的文本类别; C u n k C_{unk} Cunk为未知的类别, T w T_w Tw就是通配符wildcard learning;当然,作为开放世界检测模型,需要能够不断从Unknown中迭代出新类别来更新 c k c_k ck,也就是第3个公式中表达意思。

2.2.Efficient Adaptive Decision Learning

论文创新点之一,但实际上就是 LoRA微调 TextEncoder。

2.3.Open-World Wildcard Learning

这里主要介绍下通配符学习策略,看模型是如何在train stage筛选Unknown物体的。先说两个子训练stage:

  1. 先训练open-vocabulary-detector,即完成类似yolo-world的训练;
  2. 设置可学习嵌入向量wildcard embedding,代表含义是 object,监督信息是所有box;
  3. 在完成上述训练后,需要将两个部分结合起来,将wildcard embedding发现所有物体的能力迁移到open-vocabulary部分:但结合时候会出现问题,因为通配符检测结果跟open-vocabulary的一部分检测框是重叠的,需要过滤掉。而将未过滤的则是 Unkonwn 物体,将其交给可学习嵌入向量Unkonwn Wildcard。

而具体筛选策略就是通过底下公式:

也可以按照下图示例说明:当迭代发现新的类别即CurrentKnown时,跟绿色的GTbox做监督训练。而Well-tuned Wildcard检测出 0.0001和0.2和0.8的虚线框,其中0.001因阈值太低过滤掉,而0.2去分配给Unkonwn Wildcard,而0.8因跟GTbox交并比过大也被过滤掉了

3、实验结果

比yolo-world高。

LoRA微调TextEncoder涨点儿明显。

总结

总体来说结合起来挺有意思,从另一个角度来解决open-world问题。

相关推荐
workflower7 分钟前
使用谱聚类将相似度矩阵分为2类
人工智能·深度学习·算法·机器学习·设计模式·软件工程·软件需求
jndingxin11 分钟前
OpenCV CUDA 模块中在 GPU 上对图像或矩阵进行 翻转(镜像)操作的一个函数 flip()
人工智能·opencv
囚生CY21 分钟前
【速写】TRL:Trainer的细节与思考(PPO/DPO+LoRA可行性)
人工智能
杨德兴23 分钟前
3.3 阶数的作用
人工智能·学习
望获linux32 分钟前
医疗实时操作系统方案:手术机器人的微秒级运动控制
人工智能·机器人·实时操作系统·rtos·嵌入式软件·医疗自动化
仓颉编程语言1 小时前
仓颉Magic亮相GOSIM AI Paris 2025:掀起开源AI框架新热潮
人工智能·华为·开源·鸿蒙·仓颉编程语言
攻城狮7号1 小时前
一文理清人工智能,机器学习,深度学习的概念
人工智能·深度学习·机器学习·ai
智慧地球(AI·Earth)1 小时前
当 Manus AI 遇上 OpenAI Operator,谁能更胜一筹?
人工智能
小森77671 小时前
(七)深度学习---神经网络原理与实现
人工智能·深度学习·神经网络·算法
Fireworkitte1 小时前
边缘网关(边缘计算)
人工智能·边缘计算