基于OpenCV的拆分和合并图像通道实验案例分享_基于RK3568教学实验箱

一、实验目的

本节视频的目的是了解图像通道的概念,学习OpenCV的基本操作,并掌握通过OpenCV实现拆分和合并图像通道的方法。

二、实验原理

拆分与合并图像

在图像处理中,一个彩色图像通常由多个颜色通道组成。对于RGB(红绿蓝)图像,最常见的通道组合是红色、绿色和蓝色。每个通道都表示图像中的一种颜色信息,并且是一个灰度图像,其值通常在0(黑色)到255(白色)之间变化。

拆分图像通道

将彩色图像的每个颜色通道分离出来的过程。每个灰度图像对应原始图像的一个颜色通道。通过查看拆分后的通道图像,可以更清楚地看到每个颜色通道在图像中的作用。

合并图像通道

将单独的颜色通道组合成一个彩色图像的过程。

在OpenCV中,可以通过cv2.split()函数实现拆分图像通道。这个函数接受一个彩色图像作为输入,并返回一个包含三个(对于RGB图像)或四个(对于RGBA图像,包含透明度通道)灰度图像的元组。每个灰度图像对应原始图像的一个颜色通道。通过查看拆分后的通道图像,可以更清楚地看到每个颜色通道在图像中的作用。

合并图像通道可以通过cv2.merge()函数实现。这个函数接受一个包含灰度图像的元组作为输入(元组中的图像数量应与目标彩色图像的通道数相同),并返回一个彩色图像。

示例代码中,首先读取一个图像文件,然后使用cv2.split()拆分颜色通道,并使用cv2.imshow()函数显示每个通道的图像。接着,它使用cv2.merge()合并这些通道,并显示合并后的图像。最后,它等待用户按键后关闭所有窗口。

三、操作现象

实验设备

本实验中使用的软件为VMware17+Ubuntu18.04.4 和串口调试工具Xshell。

本实验中使用的是TL3568-PlusTEB实验箱,所需的配件为Micro SD卡、Type-C线、电源和网线。

硬件连接

(1)将Ubuntu系统启动卡插至Micro SD卡槽。

(2)使用Type-C线连接USB TO UART2调试串口到PC机。

(3)将实验箱ETH0 RGMII网口(COM21)通过网线连接至路由器。

(4)连接实验箱电源,先不要上电。

软件操作

(1)先在设备管理器查看串口的端口号;

(2)再设置串口调试工具,波特率设置为1500000,点击连接,在Xshell调试终端会显示连接成功。

(3)连接成功后,拨动实验箱的电源开关,将实验箱上电。

(4)系统启动成功后,输入账户密码登录即可(账密均为:tronlong)

(5)登录成功后,查询实验箱的网口地址。

拷贝文件

我们先打开Ubuntu,将Demo文件夹拷贝到RK3568目录下。

"Ctrl+Alt+T"打开控制台,执行命令将文件拷贝至实验箱文件系统(根据实验箱实际IP地址修改命令)。

运行程序

在串口调试窗口执行命令,启动开发环境

在网页输入地址,即可打开登录界面 (根据实际IP地址修改网页地址)。

输入密码:tronlong,登录。

在程序目录,双击打开程序,点击重新运行程序。

等待右上角的进度饼图变白,程序运行完成。

在程序最下方,会显示运行结果。依次是图像合并的结果图、拆分的B通道图像、G通道图像和R通道图像。

相关推荐
后端小肥肠4 分钟前
突破 LLM 极限!n8n + MemMachine 打造“无限流”小说生成器
人工智能·aigc·agent
道19934 分钟前
PyTorch 从小白到高级进阶教程[工业级示例](三)
人工智能·pytorch·python
南山乐只8 分钟前
【原文翻译搬运】Equipping agents for the real world with Agent Skills
人工智能·职场和发展·创业创新
AI营销快线15 分钟前
金融AI内容合规,三类系统怎么选?
大数据·人工智能
测试人社区-千羽16 分钟前
智能测试的终极形态:从自动化到自主化的范式变革
运维·人工智能·python·opencv·测试工具·自动化·开源软件
用户91860343127318 分钟前
AI重塑云原生应用开发实战-极客时间
人工智能
秋刀鱼 ..20 分钟前
2026年机器人感知与智能控制国际学术会议(RPIC 2026)
运维·人工智能·科技·金融·机器人·自动化
listhi52020 分钟前
使用Hopfield神经网络解决旅行商问题
人工智能·深度学习·神经网络
锐学AI22 分钟前
从零开始学MCP(八)- 构建一个MCP server
人工智能·python
木棉知行者23 分钟前
PyTorch 核心方法:state_dict ()、parameters () 参数打印与应用
人工智能·pytorch·python