nn.RNN解析

以下是RNN的计算公式,t时刻的隐藏状态H(t)等于前一时刻隐藏状态H(t-1)乘以参数矩阵,再加t时刻的输入x(t)乘以参数矩阵,最后再通过激活函数,等到t时刻隐藏状态。

下图是输出input和初始化的隐藏状态,当参数batch_first = True时候,输入是(batch_size,Sequence_length,input_size),参数batch_first = False的时候,输入是
(Sequence_length,batch_size,input_size)

h_0就是初始时刻的隐藏状态hidden state,一般情况下,输入是(D*num_layers,N,H_out)

  • D:如果是双向RNN则为2,如果是单向RNN则为1
  • num_layers: 是RNN的层数
  • N:Batch_size 大小
  • H_in :input size
  • H_out : hidden_size
    写到这里也就把RNN的传入参数给将明白了,主要就是初始隐藏态和input

    输出
  • 输出分别输出最后一个时刻的隐藏态以及所有时刻隐藏态的堆叠,作为输出outputs
  • outputs: 当batch_first = True时,输出为(batch_size,Sequence_length,hidden_size * D);当batch_first = False 的时候,输出为(Sequence_length,Batch_size,hidden_size*D)
  • h_n: 输出为(D*num_layers,Batch_size,hidden_size)
  • 参数 D 同上面一样,这里不在赘述。

    示例:

    RNN 返回值中 outputs 和 hidden_n的关系
    由下图可知,outputs最后一个时间步的输出就是hidden_n
相关推荐
zxsz_com_cn23 分钟前
设备预测性维护典型案例:中讯烛龙赋能高端制造降本增效
人工智能
人工智能培训42 分钟前
图神经网络初探(1)
人工智能·深度学习·知识图谱·群体智能·智能体
love530love1 小时前
Windows 11 下 Z-Image-Turbo 完整部署与 Flash Attention 2.8.3 本地编译复盘
人工智能·windows·python·aigc·flash-attn·z-image·cuda加速
雪下的新火1 小时前
AI工具-Hyper3D
人工智能·aigc·blender·ai工具·笔记分享
Das12 小时前
【机器学习】01_模型选择与评估
人工智能·算法·机器学习
墨染天姬2 小时前
【AI】AI时代,模组厂商如何建立自己的AI护城河?
人工智能
aigcapi2 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
字节跳动开源2 小时前
Midscene v1.0 发布 - 视觉驱动,UI 自动化体验跃迁
前端·人工智能·客户端
+wacyltd大模型备案算法备案3 小时前
大模型备案怎么做?2025年企业大模型备案全流程与材料清单详解
人工智能·大模型备案·算法备案·大模型上线登记