nn.RNN解析

以下是RNN的计算公式,t时刻的隐藏状态H(t)等于前一时刻隐藏状态H(t-1)乘以参数矩阵,再加t时刻的输入x(t)乘以参数矩阵,最后再通过激活函数,等到t时刻隐藏状态。

下图是输出input和初始化的隐藏状态,当参数batch_first = True时候,输入是(batch_size,Sequence_length,input_size),参数batch_first = False的时候,输入是
(Sequence_length,batch_size,input_size)

h_0就是初始时刻的隐藏状态hidden state,一般情况下,输入是(D*num_layers,N,H_out)

  • D:如果是双向RNN则为2,如果是单向RNN则为1
  • num_layers: 是RNN的层数
  • N:Batch_size 大小
  • H_in :input size
  • H_out : hidden_size
    写到这里也就把RNN的传入参数给将明白了,主要就是初始隐藏态和input

    输出
  • 输出分别输出最后一个时刻的隐藏态以及所有时刻隐藏态的堆叠,作为输出outputs
  • outputs: 当batch_first = True时,输出为(batch_size,Sequence_length,hidden_size * D);当batch_first = False 的时候,输出为(Sequence_length,Batch_size,hidden_size*D)
  • h_n: 输出为(D*num_layers,Batch_size,hidden_size)
  • 参数 D 同上面一样,这里不在赘述。

    示例:

    RNN 返回值中 outputs 和 hidden_n的关系
    由下图可知,outputs最后一个时间步的输出就是hidden_n
相关推荐
ZCXZ12385296a1 分钟前
YOLO13改进模型C3k2-SFHF实现:阻尼器类型识别与分类系统详解
人工智能·分类·数据挖掘
黑客思维者3 分钟前
2025年AI垃圾(AI Slop)现象综合研究报告:规模、影响与治理路径
人工智能·搜索引擎·百度
Aspect of twilight28 分钟前
QwenVL 模型输入细节
人工智能·qwen
悟纤36 分钟前
Suno 电子舞曲创作指南:102 个实用 Prompt 精选 | Suno高级篇 | 第20篇
人工智能·prompt·suno·suno ai·suno api·ai music
北京耐用通信40 分钟前
石油化工车间的“通讯救星”:耐达讯自动化Profibus总线光纤中继器有多实用?
人工智能·科技·物联网·自动化·信息与通信
檐下翻书1731 小时前
具身智能:AI在物理环境中的感知-行动闭环
人工智能
十铭忘1 小时前
动作识别10——基于骨骼点的动作识别PoseC3D
人工智能·深度学习·计算机视觉
用针戳左手中指指头1 小时前
AI小白搞AI之目标检测:王者荣耀画面识别
人工智能·python·yolo·目标检测·王者荣耀
码农三叔1 小时前
(9-2-02)自动驾驶中基于概率采样的路径规划:基于Gazebo仿真的路径规划系统(2)
人工智能·机器学习·机器人·自动驾驶·rrt
Fasda123451 小时前
使用VFNet模型实现车轮缺陷检测与分类_改进模型_r50-mdconv-c3-c5_fpn_ms-2x_coco
人工智能·分类·数据挖掘