python实战豆包大模型-文本模型

准备

注册并登录火山引擎

官网\] https://console.volcengine.com/ark/region:ark+cn-beijing/experience/chat ![](https://i-blog.csdnimg.cn/direct/117ca73a231f49a28c33920d9030feb3.png) * ### 开通模型 ![](https://i-blog.csdnimg.cn/direct/10872cd1f3bc40db9bc873813206a666.png) * ### 创建推理接入点 ![](https://i-blog.csdnimg.cn/direct/e116c8ebe3b841b1b51e073574f0d571.png) ![](https://i-blog.csdnimg.cn/direct/e9058c1df0404dd2a89f1b227324b02e.png) * ### 调用参数API Key、model ![](https://i-blog.csdnimg.cn/direct/90252519677d4c0b8d7f3ad6f494ac17.png) ![](https://i-blog.csdnimg.cn/direct/3633cb1cb2e8452d9cb5d2588ea4a4f7.png) ## 调用 ### SDK调用 > pip install --upgrade 'volcengine-python-sdk\[ark\]' ```python from volcenginesdkarkruntime import Ark ​ client = Ark( base_url="https://ark.cn-beijing.volces.com/api/v3", api_key="上面获取的api-key" ) ​ # Non-streaming: print("----- standard request -----") completion = client.chat.completions.create( model="上面获取的model", messages = [ {"role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"}, {"role": "user", "content": "常见的十字花科植物有哪些?"}, ], ) print(completion.choices[0].message.content) ​ # Streaming: 流式调用 print("----- streaming request -----") stream = client.chat.completions.create( model="上面获取的model", messages = [ {"role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"}, {"role": "user", "content": "常见的十字花科植物有哪些?"}, ], stream=True ) for chunk in stream: if not chunk.choices: continue print(chunk.choices[0].delta.content, end="") ``` ### HTTP调用 > # url https://ark.cn-beijing.volces.com/api/v3 > > # json_date { model:"上面获取的model",messages = \[{"role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"},{"role": "user", "content": "常见的十字花科植物有哪些?"},\]} > > # sk 上面获取的api-key ```python async def get_common_content(url,json_data,sk): try: async with aiohttp.ClientSession() as session: authorization = "Bearer "+ (str(sk)) # print(f"**** 调用接口 -{url}-{json_data}-{authorization}****") headers = {"Content-Type": 'application/json',"Authorization": authorization } async with session.post(url,data = json.dumps(json_data), headers = headers) as response: return await response.text() except Exception as e: print(f"**ERROR 调用模型失败....{e}**") ```

相关推荐
火车叼位4 分钟前
也许你不需要创建.venv, 此规范使python脚本自备依赖
python
BD_Marathon10 分钟前
设计模式——依赖倒转原则
java·开发语言·设计模式
火车叼位11 分钟前
脚本伪装:让 Python 与 Node.js 像原生 Shell 命令一样运行
运维·javascript·python
孤狼warrior22 分钟前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
devmoon29 分钟前
在 Polkadot Runtime 中添加多个 Pallet 实例实战指南
java·开发语言·数据库·web3·区块链·波卡
Katecat9966332 分钟前
YOLO11分割算法实现甲状腺超声病灶自动检测与定位_DWR方法应用
python
Evand J32 分钟前
TDOA(到达时间差)的GDOP和CRLB计算的MATLAB例程,论文复现,附参考文献。GDOP:几何精度因子&CRLB:克拉美罗下界
开发语言·matlab·tdoa·crlb·gdop
野犬寒鸦32 分钟前
从零起步学习并发编程 || 第七章:ThreadLocal深层解析及常见问题解决方案
java·服务器·开发语言·jvm·后端·学习
云姜.36 分钟前
java抽象类和接口
java·开发语言
xyq20241 小时前
Pandas 安装指南
开发语言