python实战豆包大模型-文本模型

准备

注册并登录火山引擎

官网\] https://console.volcengine.com/ark/region:ark+cn-beijing/experience/chat ![](https://i-blog.csdnimg.cn/direct/117ca73a231f49a28c33920d9030feb3.png) * ### 开通模型 ![](https://i-blog.csdnimg.cn/direct/10872cd1f3bc40db9bc873813206a666.png) * ### 创建推理接入点 ![](https://i-blog.csdnimg.cn/direct/e116c8ebe3b841b1b51e073574f0d571.png) ![](https://i-blog.csdnimg.cn/direct/e9058c1df0404dd2a89f1b227324b02e.png) * ### 调用参数API Key、model ![](https://i-blog.csdnimg.cn/direct/90252519677d4c0b8d7f3ad6f494ac17.png) ![](https://i-blog.csdnimg.cn/direct/3633cb1cb2e8452d9cb5d2588ea4a4f7.png) ## 调用 ### SDK调用 > pip install --upgrade 'volcengine-python-sdk\[ark\]' ```python from volcenginesdkarkruntime import Ark ​ client = Ark( base_url="https://ark.cn-beijing.volces.com/api/v3", api_key="上面获取的api-key" ) ​ # Non-streaming: print("----- standard request -----") completion = client.chat.completions.create( model="上面获取的model", messages = [ {"role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"}, {"role": "user", "content": "常见的十字花科植物有哪些?"}, ], ) print(completion.choices[0].message.content) ​ # Streaming: 流式调用 print("----- streaming request -----") stream = client.chat.completions.create( model="上面获取的model", messages = [ {"role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"}, {"role": "user", "content": "常见的十字花科植物有哪些?"}, ], stream=True ) for chunk in stream: if not chunk.choices: continue print(chunk.choices[0].delta.content, end="") ``` ### HTTP调用 > # url https://ark.cn-beijing.volces.com/api/v3 > > # json_date { model:"上面获取的model",messages = \[{"role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"},{"role": "user", "content": "常见的十字花科植物有哪些?"},\]} > > # sk 上面获取的api-key ```python async def get_common_content(url,json_data,sk): try: async with aiohttp.ClientSession() as session: authorization = "Bearer "+ (str(sk)) # print(f"**** 调用接口 -{url}-{json_data}-{authorization}****") headers = {"Content-Type": 'application/json',"Authorization": authorization } async with session.post(url,data = json.dumps(json_data), headers = headers) as response: return await response.text() except Exception as e: print(f"**ERROR 调用模型失败....{e}**") ```

相关推荐
微信api接口介绍3 分钟前
微信社群管理开发
java·开发语言·网络·微信
打酱油的;6 分钟前
【无标题】
爬虫·python·php
csbysj202013 分钟前
PHP 类型比较
开发语言
白熊18829 分钟前
【图像大模型】ms-swift 深度解析:一站式多模态大模型微调与部署框架的全流程使用指南
开发语言·ios·swift
幸福清风35 分钟前
【Python】基于Tkinter库实现文件夹拖拽与选择功能
windows·python·microsoft·tkinter
海琴烟Sunshine37 分钟前
leetcode 168. Excel 表列名称 python
python·算法·leetcode
java1234_小锋1 小时前
TensorFlow2 Python深度学习 - 卷积神经网络示例2-使用Fashion MNIST识别时装示例
python·深度学习·tensorflow·tensorflow2
@sinner1 小时前
《扫雷:病毒蔓延》- 颠覆传统的动态扫雷游戏
python·游戏·pygame
愈努力俞幸运1 小时前
python 列表浅拷贝 深拷贝
python
qiuiuiu4132 小时前
正点原子RK3568学习日志6-驱动模块传参
linux·c语言·开发语言·单片机·学习