百度木木浆测试

本程序测试识别图片的文字

import cv2

from paddleocr import PaddleOCR, draw_ocr

from matplotlib import pyplot as plt

加载PaddleOCR模型,这里你可以根据需要选择语言和模型路径

ocr = PaddleOCR(use_gpu=False, lang='ch') # 假设我们识别中文字符,并且不使用GPU

读取图像

img = cv2.imread("car.jpg")

缩放图像(如果需要)

img = cv2.resize(img, (int(img.shape[1] * 0.5), int(img.shape[0] * 0.5)))

将BGR图像转换为灰度图像(如果需要OCR前的预处理,但PaddleOCR通常处理BGR图像)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

显示灰度图像(通常这不是OCR的必要步骤,但在这里只是为了展示)

fig = plt.figure(figsize=(6, 6))

plt.imshow(gray, cmap='gray'), plt.axis('off'), plt.title("Grayscale Image")

plt.show()

使用PaddleOCR进行OCR

result = ocr.ocr(img, use_gpu=False)

在原图上绘制OCR结果

from PIL import Image

image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 转换为RGB格式,因为PIL使用RGB

boxes = [line[0] for line in result]

txts = [line[1][0] for line in result]

scores = [line[1][1] for line in result]

im_show = draw_ocr(image, boxes, txts, scores, font_path='./doc/fonts/simfang.ttf')

im_show = np.array(im_show) # 将PIL图像转换为numpy数组

显示带有OCR结果的图像

plt.figure(figsize=(12, 6))

plt.imshow(cv2.cvtColor(im_show, cv2.COLOR_BGR2RGB)) # 再次转换为RGB以在matplotlib中显示

plt.axis('off')

plt.title("OCR Result")

plt.show()

相关推荐
Fansv5874 小时前
深度学习-6.用于计算机视觉的深度学习
人工智能·深度学习·计算机视觉
SKYDROID云卓小助手5 小时前
无人设备遥控器之如何分享数传篇
网络·人工智能·算法·计算机视觉·电脑
萧鼎8 小时前
利用 OpenCV 进行棋盘检测与透视变换
人工智能·opencv·计算机视觉
紫雾凌寒11 小时前
计算机视觉基础|卷积神经网络:从数学原理到可视化实战
人工智能·深度学习·神经网络·机器学习·计算机视觉·cnn·卷积神经网络
IT古董12 小时前
【深度学习】计算机视觉(CV)-图像生成-风格迁移(Style Transfer)
人工智能·计算机视觉
阿_旭12 小时前
目标检测中单阶段检测模型与双阶段检测模型详细对比与说明
人工智能·深度学习·目标检测·计算机视觉
紫雾凌寒14 小时前
计算机视觉基础|从 OpenCV 到频域分析
深度学习·opencv·计算机视觉·傅里叶变换·频域分析
小屁孩大帅-杨一凡15 小时前
如何实现使用DeepSeek的CV模型对管道内模糊、低光照或水渍干扰的图像进行去噪、超分辨率重建。...
图像处理·人工智能·opencv·计算机视觉·超分辨率重建
高力士等十万人17 小时前
OpenCV形态学操作
人工智能·python·opencv·计算机视觉
埃菲尔铁塔_CV算法17 小时前
基于 C++ OpenCV 图像灰度化 DLL 在 C# WPF 中的拓展应用
c++·图像处理·人工智能·opencv·机器学习·计算机视觉·c#