百度木木浆测试

本程序测试识别图片的文字

import cv2

from paddleocr import PaddleOCR, draw_ocr

from matplotlib import pyplot as plt

加载PaddleOCR模型,这里你可以根据需要选择语言和模型路径

ocr = PaddleOCR(use_gpu=False, lang='ch') # 假设我们识别中文字符,并且不使用GPU

读取图像

img = cv2.imread("car.jpg")

缩放图像(如果需要)

img = cv2.resize(img, (int(img.shape[1] * 0.5), int(img.shape[0] * 0.5)))

将BGR图像转换为灰度图像(如果需要OCR前的预处理,但PaddleOCR通常处理BGR图像)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

显示灰度图像(通常这不是OCR的必要步骤,但在这里只是为了展示)

fig = plt.figure(figsize=(6, 6))

plt.imshow(gray, cmap='gray'), plt.axis('off'), plt.title("Grayscale Image")

plt.show()

使用PaddleOCR进行OCR

result = ocr.ocr(img, use_gpu=False)

在原图上绘制OCR结果

from PIL import Image

image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 转换为RGB格式,因为PIL使用RGB

boxes = [line[0] for line in result]

txts = [line[1][0] for line in result]

scores = [line[1][1] for line in result]

im_show = draw_ocr(image, boxes, txts, scores, font_path='./doc/fonts/simfang.ttf')

im_show = np.array(im_show) # 将PIL图像转换为numpy数组

显示带有OCR结果的图像

plt.figure(figsize=(12, 6))

plt.imshow(cv2.cvtColor(im_show, cv2.COLOR_BGR2RGB)) # 再次转换为RGB以在matplotlib中显示

plt.axis('off')

plt.title("OCR Result")

plt.show()

相关推荐
淬炼之火15 小时前
阅读:基于深度学习的红外可见光图像融合综述
图像处理·深度学习·机器学习·计算机视觉·特征融合·红外图像识别
再__努力1点17 小时前
【11】特征检测与匹配:AKAZE特征算法详解与实现
人工智能·python·opencv·算法·计算机视觉·特征提取
张人玉1 天前
Cognex VisionPro 相机工具集成代码分析笔记
数码相机·计算机视觉·vsionpro
AI浩1 天前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
深度学习lover1 天前
<数据集>yolo航拍斑马线识别数据集<目标检测>
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集·航拍斑马线识别
这张生成的图像能检测吗1 天前
(论文速读)AIMV2:一种基于多模态自回归预训练的大规模视觉编码器方法
人工智能·计算机视觉·预训练·视觉语言模型
AndrewHZ1 天前
【图像处理基石】 怎么让图片变成波普风?
图像处理·算法·计算机视觉·风格迁移·cv
CV实验室1 天前
AAAI 2026 Oral 之江实验室等提出MoEGCL:在6大基准数据集上刷新SOTA,聚类准确率最高提升超8%!
人工智能·机器学习·计算机视觉·数据挖掘·论文·聚类
QTreeY1231 天前
detr目标检测+deepsort/strongsort/bytetrack/botsort算法的多目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
yolo_guo2 天前
opencv 学习: QA_01 什么是图像锐化
linux·c++·opencv·计算机视觉