百度木木浆测试

本程序测试识别图片的文字

import cv2

from paddleocr import PaddleOCR, draw_ocr

from matplotlib import pyplot as plt

加载PaddleOCR模型,这里你可以根据需要选择语言和模型路径

ocr = PaddleOCR(use_gpu=False, lang='ch') # 假设我们识别中文字符,并且不使用GPU

读取图像

img = cv2.imread("car.jpg")

缩放图像(如果需要)

img = cv2.resize(img, (int(img.shape[1] * 0.5), int(img.shape[0] * 0.5)))

将BGR图像转换为灰度图像(如果需要OCR前的预处理,但PaddleOCR通常处理BGR图像)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

显示灰度图像(通常这不是OCR的必要步骤,但在这里只是为了展示)

fig = plt.figure(figsize=(6, 6))

plt.imshow(gray, cmap='gray'), plt.axis('off'), plt.title("Grayscale Image")

plt.show()

使用PaddleOCR进行OCR

result = ocr.ocr(img, use_gpu=False)

在原图上绘制OCR结果

from PIL import Image

image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 转换为RGB格式,因为PIL使用RGB

boxes = [line[0] for line in result]

txts = [line[1][0] for line in result]

scores = [line[1][1] for line in result]

im_show = draw_ocr(image, boxes, txts, scores, font_path='./doc/fonts/simfang.ttf')

im_show = np.array(im_show) # 将PIL图像转换为numpy数组

显示带有OCR结果的图像

plt.figure(figsize=(12, 6))

plt.imshow(cv2.cvtColor(im_show, cv2.COLOR_BGR2RGB)) # 再次转换为RGB以在matplotlib中显示

plt.axis('off')

plt.title("OCR Result")

plt.show()

相关推荐
格林威6 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
研梦非凡9 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
Monkey的自我迭代9 小时前
多目标轮廓匹配
人工智能·opencv·计算机视觉
索迪迈科技10 小时前
安防芯片 ISP 的白平衡统计数据对图像质量有哪些影响?
人工智能·计算机视觉·白平衡
ViperL111 小时前
[优化算法]神经网络结构搜索(一)
深度学习·神经网络·计算机视觉
张子夜 iiii12 小时前
实战项目-----在图片 hua.png 中,用红色画出花的外部轮廓,用绿色画出其简化轮廓(ε=周长×0.005),并在同一窗口显示
人工智能·pytorch·python·opencv·计算机视觉
nenchoumi311915 小时前
全网首发!Realsense 全新 D555 相机开箱记录与 D435i、L515、D456 横向测评!
数码相机·计算机视觉·机器人·ros·realsense
小关会打代码16 小时前
计算机视觉之多模板匹配
人工智能·计算机视觉
AI 嗯啦16 小时前
计算机视觉----opencv----身份证号码识别案例
人工智能·opencv·计算机视觉
星期天要睡觉16 小时前
计算机视觉(opencv)——基于模板匹配的信用卡号识别系统
opencv·计算机视觉