百度木木浆测试

本程序测试识别图片的文字

import cv2

from paddleocr import PaddleOCR, draw_ocr

from matplotlib import pyplot as plt

加载PaddleOCR模型,这里你可以根据需要选择语言和模型路径

ocr = PaddleOCR(use_gpu=False, lang='ch') # 假设我们识别中文字符,并且不使用GPU

读取图像

img = cv2.imread("car.jpg")

缩放图像(如果需要)

img = cv2.resize(img, (int(img.shape[1] * 0.5), int(img.shape[0] * 0.5)))

将BGR图像转换为灰度图像(如果需要OCR前的预处理,但PaddleOCR通常处理BGR图像)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

显示灰度图像(通常这不是OCR的必要步骤,但在这里只是为了展示)

fig = plt.figure(figsize=(6, 6))

plt.imshow(gray, cmap='gray'), plt.axis('off'), plt.title("Grayscale Image")

plt.show()

使用PaddleOCR进行OCR

result = ocr.ocr(img, use_gpu=False)

在原图上绘制OCR结果

from PIL import Image

image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 转换为RGB格式,因为PIL使用RGB

boxes = [line[0] for line in result]

txts = [line[1][0] for line in result]

scores = [line[1][1] for line in result]

im_show = draw_ocr(image, boxes, txts, scores, font_path='./doc/fonts/simfang.ttf')

im_show = np.array(im_show) # 将PIL图像转换为numpy数组

显示带有OCR结果的图像

plt.figure(figsize=(12, 6))

plt.imshow(cv2.cvtColor(im_show, cv2.COLOR_BGR2RGB)) # 再次转换为RGB以在matplotlib中显示

plt.axis('off')

plt.title("OCR Result")

plt.show()

相关推荐
却道天凉_好个秋26 分钟前
OpenCV(四十一):SIFT关键点检测
人工智能·opencv·计算机视觉
明月照山海-1 小时前
机器学习周报二十六
人工智能·机器学习·计算机视觉
kaikaile19951 小时前
MATLAB 灰度图像的二维傅里叶变换
算法·计算机视觉·matlab
永恒-龙啸1 小时前
图像增强与滤波
图像处理·人工智能·计算机视觉
ʜᴇɴʀʏ3 小时前
论文阅读 SAM 3: Segment Anything with Concepts
论文阅读·人工智能·目标检测·计算机视觉·目标跟踪
豆芽8196 小时前
计算机视觉:异常检测(paper with code汇总更新中)
人工智能·神经网络·计算机视觉·视觉检测·扩散模型
AI即插即用6 小时前
即插即用系列 | MICCAI EM-Net:融合 Mamba 与频域学习的高效 3D 医学图像分割网络
网络·人工智能·深度学习·神经网络·学习·计算机视觉·视觉检测
wtsolutions6 小时前
图像像素RGBA提取器 v2.0.0 - 精确提取图像颜色数据的专业工具
计算机视觉·rgba
Chunyyyen7 小时前
【第二十六周】OCR学习01
学习·计算机视觉·ocr
CoovallyAIHub8 小时前
告别“消失的小目标”:航拍图像检测新框架,精度飙升25.7%的秘诀
深度学习·算法·计算机视觉