快速、高效的数据处理:深入了解 Polars 库

快速、高效的数据处理:深入了解 Polars 库

在数据科学和分析领域,Pandas 一直是 Python 数据处理的标杆。然而,随着数据量的增加,Pandas 在性能上的局限性逐渐显现。为了解决这一问题,越来越多的开发者开始寻找替代方案。Polars 是其中的佼佼者,它以速度快、内存效率高、表达力强等优点受到广泛关注。

本文将介绍 Polars 的核心特点、基本用法,以及与 Pandas 的对比。


什么是 Polars?

Polars 是一个基于 Rust 编写的开源高性能数据框架,专注于快速处理大规模数据集。与 Pandas 不同,Polars 采用 Apache Arrow 作为底层内存格式,并使用列式存储模型,极大提升了数据处理效率。

Polars 支持:

  • 并行计算:充分利用多核 CPU 提高性能。
  • 懒惰计算:通过延迟执行优化查询计划。
  • 表达式 API:高效、清晰地处理复杂的数据操作。

为什么选择 Polars?

  1. 速度快

    Polars 的核心用 Rust 编写,与 Pandas 相比,处理大数据时的速度显著提升。

  2. 内存效率高

    采用 Arrow 的列式存储模型,有效降低内存占用,支持更大的数据集。

  3. 灵活的 API

    Polars 提供两种模式:

    • 惰性 API:延迟计算,优化查询流程。
    • 即时 API:类似 Pandas 的操作风格。
  4. 跨平台

    Polars 支持在 Python、Rust 和其他语言中使用,且与 PyArrow 和 NumPy 高度兼容。


安装 Polars

在 Python 环境中,可以通过 pip 安装 Polars:

bash 复制代码
pip install polars

如果需要支持懒惰计算,还需安装额外依赖:

bash 复制代码
pip install polars[lazy]

Polars 的核心数据结构

Polars 的核心数据结构包括:

  1. DataFrame:类似 Pandas 的 DataFrame,用于表格数据。
  2. Series:一维数组,类似 Pandas 的 Series。

Polars 的基本用法

1. 创建 DataFrame

python 复制代码
import polars as pl

# 从字典创建
df = pl.DataFrame({
    "name": ["Alice", "Bob", "Charlie"],
    "age": [25, 30, 35],
    "score": [85, 90, 95]
})

print(df)

输出:

复制代码
shape: (3, 3)
┌─────────┬─────┬───────┐
│ name    │ age │ score │
│ ---     │ --- │ ---   │
│ str     │ i64 │ i64   │
├─────────┼─────┼───────┤
│ Alice   │ 25  │ 85    │
│ Bob     │ 30  │ 90    │
│ Charlie │ 35  │ 95    │
└─────────┴─────┴───────┘

2. 数据选择与过滤

python 复制代码
# 选择列
print(df.select("name"))

# 条件过滤
filtered = df.filter(pl.col("age") > 28)
print(filtered)

3. 添加和修改列

python 复制代码
# 添加新列
df = df.with_columns((pl.col("score") * 2).alias("double_score"))
print(df)

# 修改列
df = df.with_columns(pl.col("age").apply(lambda x: x + 1).alias("age"))
print(df)

4. 分组与聚合

python 复制代码
# 分组并聚合
grouped = df.groupby("name").agg([
    pl.col("score").mean().alias("avg_score")
])
print(grouped)

Polars 的惰性计算模式

惰性计算模式通过延迟执行操作来优化性能。例如:

python 复制代码
# 使用惰性 DataFrame
lazy_df = df.lazy()

# 定义操作
result = lazy_df.filter(pl.col("age") > 28).select(["name", "age"])

# 执行计算
print(result.collect())

在实际运行时,Polars 会将多步操作合并为一次高效的查询。


Polars 与 Pandas 的对比

特性 Polars Pandas
性能 快速,支持并行计算 单线程处理,性能较低
内存使用 高效,列式存储 效率较低
API 灵活,支持惰性和即时计算 即时计算
生态 新兴库,成长迅速 成熟库,生态完善
语法风格 偏函数式 偏面向对象

Polars 的应用场景

  • 大规模数据分析:处理超过内存容量的数据集。
  • ETL 工作流:高效清洗和转换数据。
  • 实时查询:需要快速响应的分析场景。
  • 机器学习前处理:预处理大数据集时更快。

总结

Polars 是 Pandas 的优秀替代方案,尤其适合处理大规模数据的任务。通过结合 Rust 的性能优势和 Arrow 的高效存储,Polars 在速度和内存效率方面远超 Pandas。如果你的项目面临性能瓶颈或需要处理更大的数据集,不妨试试 Polars!

相关推荐
月光技术杂谈2 分钟前
基于Python的网络性能分析实践:从Ping原理到自动化监控
网络·python·性能分析·ping·时延·自动化监控
龘龍龙5 分钟前
Python基础学习(四)
开发语言·python·学习
洵有兮1 小时前
python第四次作业
开发语言·python
kkoral1 小时前
单机docker部署的redis sentinel,使用python调用redis,报错
redis·python·docker·sentinel
BoBoZz191 小时前
IterativeClosestPoints icp配准矩阵
python·vtk·图形渲染·图形处理
test管家1 小时前
PyTorch动态图编程与自定义网络层实战教程
python
laocooon5238578862 小时前
python 收发信的功能。
开发语言·python
清水白石0082 小时前
《Python 责任链模式实战指南:从设计思想到工程落地》
开发语言·python·责任链模式
沛沛老爹2 小时前
Web开发者快速上手AI Agent:基于LangChain的提示词应用优化实战
人工智能·python·langchain·提示词·rag·web转型
宁大小白2 小时前
pythonstudy Day39
python·机器学习