classification_report分类报告的含义

基础知识

混淆矩阵(Confusion Matrix)

可以看出来类别之间相互误分的情况,查看是否有特定的类别相互混淆,能够帮我们调整后续模型,比如一些类别设置权重衰减。

精度(Precision)

precisoin即准确率,也称查准率。

精确率表示模型预测为正类别的样本中有多少是真正的正类别。

准确率(Accuracy)

正确分类的样本占总样本数的比例。

召回率(Recall)

recall是召回率 ,也称查全率

在所有实际为正类别的样本中,模型能够正确预测为正类别的比例。

高召回率意味着模型能够有效地捕捉到实际为正类别的样本。

与Precision的关系:负相关。

F1分数(F1-score)

F1 分数的取值范围是 [0, 1],越接近 1 表示模型的性能越好,同时考虑到了模型在查准率和查全率之间的平衡。

示例1:

sql 复制代码
y_true = [1, 2, 3, 1, 2, 3, 1, 2, 3]
y_predicted = [1, 2, 3, 3, 2, 1, 3, 2, 3]


from sklearn.metrics import classification_report
print(classification_report(y_true, y_predicted))

输出结果:

可以加上target_names参数

效果如下:

sql 复制代码
print(classification_report(y_test, y_predicted, target_names=['a类', 'b类', 'c类']))

如图左边显示出了新传入的标签名。

示例2:

sql 复制代码
from sklearn.metrics import classification_report
Y_test=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
Y_prediction=[0, 1, 0, 0, 0, 1, 1, 0, 0, 1]
print(classification_report(Y_test,Y_prediction))

输出结果:

得到该10个数据的二分类的分类报告:

先画个混淆矩阵:

给出了每类别对应的精度(Precision)、召回率(Recall)F1分数(F1-score)、真实中有多少个是该类别的(Support)、准确率(Accuracy)、宏平均(macro avg)和加权平均(weighted avg)。

Precision:预测为x的样本中,有多少被正确预测为x。

Precision_0=4/(2+4)=0.67

Precision_1=3/(3+1)=0.75

Recall:实际为x的类别中,有多少预测为x。

Recall_0=3/5=0.60

Recall_1=4/5=0.80

F1分数:2×Precision×Recall /(Precision+Recall)。

Accuracy:全部样本里被分类正确的比例。

Accuracy=7/10

macro avg:上面类别各分数的直接平均。

macro avg_precision=(0.67+0.75)/2=0.71

weighted avg:上面类别各分数的加权(权值为support)平均。

macro avg_precision=(0.675+0.755)/10=0.71

相关推荐
子燕若水11 分钟前
Unreal Engine 5中的AI知识
人工智能
极限实验室1 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿1 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手2 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记2 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元2 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术2 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
彭祥.3 小时前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类