classification_report分类报告的含义

基础知识

混淆矩阵(Confusion Matrix)

可以看出来类别之间相互误分的情况,查看是否有特定的类别相互混淆,能够帮我们调整后续模型,比如一些类别设置权重衰减。

精度(Precision)

precisoin即准确率,也称查准率。

精确率表示模型预测为正类别的样本中有多少是真正的正类别。

准确率(Accuracy)

正确分类的样本占总样本数的比例。

召回率(Recall)

recall是召回率 ,也称查全率

在所有实际为正类别的样本中,模型能够正确预测为正类别的比例。

高召回率意味着模型能够有效地捕捉到实际为正类别的样本。

与Precision的关系:负相关。

F1分数(F1-score)

F1 分数的取值范围是 [0, 1],越接近 1 表示模型的性能越好,同时考虑到了模型在查准率和查全率之间的平衡。

示例1:

sql 复制代码
y_true = [1, 2, 3, 1, 2, 3, 1, 2, 3]
y_predicted = [1, 2, 3, 3, 2, 1, 3, 2, 3]


from sklearn.metrics import classification_report
print(classification_report(y_true, y_predicted))

输出结果:

可以加上target_names参数

效果如下:

sql 复制代码
print(classification_report(y_test, y_predicted, target_names=['a类', 'b类', 'c类']))

如图左边显示出了新传入的标签名。

示例2:

sql 复制代码
from sklearn.metrics import classification_report
Y_test=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
Y_prediction=[0, 1, 0, 0, 0, 1, 1, 0, 0, 1]
print(classification_report(Y_test,Y_prediction))

输出结果:

得到该10个数据的二分类的分类报告:

先画个混淆矩阵:

给出了每类别对应的精度(Precision)、召回率(Recall)F1分数(F1-score)、真实中有多少个是该类别的(Support)、准确率(Accuracy)、宏平均(macro avg)和加权平均(weighted avg)。

Precision:预测为x的样本中,有多少被正确预测为x。

Precision_0=4/(2+4)=0.67

Precision_1=3/(3+1)=0.75

Recall:实际为x的类别中,有多少预测为x。

Recall_0=3/5=0.60

Recall_1=4/5=0.80

F1分数:2×Precision×Recall /(Precision+Recall)。

Accuracy:全部样本里被分类正确的比例。

Accuracy=7/10

macro avg:上面类别各分数的直接平均。

macro avg_precision=(0.67+0.75)/2=0.71

weighted avg:上面类别各分数的加权(权值为support)平均。

macro avg_precision=(0.675+0.755)/10=0.71

相关推荐
Kenneth風车4 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
诚威_lol_中大努力中12 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金32 分钟前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_36 分钟前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin42 分钟前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
DashVector1 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索
说私域1 小时前
无人零售及开源 AI 智能名片 S2B2C 商城小程序的深度剖析
人工智能·小程序·零售
Calvin8808281 小时前
Android Studio 的革命性更新:Project Quartz 和 Gemini,开启 AI 开发新时代!
android·人工智能·android studio
Jamence2 小时前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论
feifeikon2 小时前
机器学习DAY4续:梯度提升与 XGBoost (完)
人工智能·深度学习·机器学习