classification_report分类报告的含义

基础知识

混淆矩阵(Confusion Matrix)

可以看出来类别之间相互误分的情况,查看是否有特定的类别相互混淆,能够帮我们调整后续模型,比如一些类别设置权重衰减。

精度(Precision)

precisoin即准确率,也称查准率。

精确率表示模型预测为正类别的样本中有多少是真正的正类别。

准确率(Accuracy)

正确分类的样本占总样本数的比例。

召回率(Recall)

recall是召回率 ,也称查全率

在所有实际为正类别的样本中,模型能够正确预测为正类别的比例。

高召回率意味着模型能够有效地捕捉到实际为正类别的样本。

与Precision的关系:负相关。

F1分数(F1-score)

F1 分数的取值范围是 [0, 1],越接近 1 表示模型的性能越好,同时考虑到了模型在查准率和查全率之间的平衡。

示例1:

sql 复制代码
y_true = [1, 2, 3, 1, 2, 3, 1, 2, 3]
y_predicted = [1, 2, 3, 3, 2, 1, 3, 2, 3]


from sklearn.metrics import classification_report
print(classification_report(y_true, y_predicted))

输出结果:

可以加上target_names参数

效果如下:

sql 复制代码
print(classification_report(y_test, y_predicted, target_names=['a类', 'b类', 'c类']))

如图左边显示出了新传入的标签名。

示例2:

sql 复制代码
from sklearn.metrics import classification_report
Y_test=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
Y_prediction=[0, 1, 0, 0, 0, 1, 1, 0, 0, 1]
print(classification_report(Y_test,Y_prediction))

输出结果:

得到该10个数据的二分类的分类报告:

先画个混淆矩阵:

给出了每类别对应的精度(Precision)、召回率(Recall)F1分数(F1-score)、真实中有多少个是该类别的(Support)、准确率(Accuracy)、宏平均(macro avg)和加权平均(weighted avg)。

Precision:预测为x的样本中,有多少被正确预测为x。

Precision_0=4/(2+4)=0.67

Precision_1=3/(3+1)=0.75

Recall:实际为x的类别中,有多少预测为x。

Recall_0=3/5=0.60

Recall_1=4/5=0.80

F1分数:2×Precision×Recall /(Precision+Recall)。

Accuracy:全部样本里被分类正确的比例。

Accuracy=7/10

macro avg:上面类别各分数的直接平均。

macro avg_precision=(0.67+0.75)/2=0.71

weighted avg:上面类别各分数的加权(权值为support)平均。

macro avg_precision=(0.675+0.755)/10=0.71

相关推荐
Shawn_Shawn2 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like4 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a4 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
李慕婉学姐4 小时前
【开题答辩过程】以《基于社交网络用户兴趣大数据分析》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
数据挖掘·数据分析
腾讯云开发者5 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗5 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_6 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信6 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235866 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活