classification_report分类报告的含义

基础知识

混淆矩阵(Confusion Matrix)

可以看出来类别之间相互误分的情况,查看是否有特定的类别相互混淆,能够帮我们调整后续模型,比如一些类别设置权重衰减。

精度(Precision)

precisoin即准确率,也称查准率。

精确率表示模型预测为正类别的样本中有多少是真正的正类别。

准确率(Accuracy)

正确分类的样本占总样本数的比例。

召回率(Recall)

recall是召回率 ,也称查全率

在所有实际为正类别的样本中,模型能够正确预测为正类别的比例。

高召回率意味着模型能够有效地捕捉到实际为正类别的样本。

与Precision的关系:负相关。

F1分数(F1-score)

F1 分数的取值范围是 [0, 1],越接近 1 表示模型的性能越好,同时考虑到了模型在查准率和查全率之间的平衡。

示例1:

sql 复制代码
y_true = [1, 2, 3, 1, 2, 3, 1, 2, 3]
y_predicted = [1, 2, 3, 3, 2, 1, 3, 2, 3]


from sklearn.metrics import classification_report
print(classification_report(y_true, y_predicted))

输出结果:

可以加上target_names参数

效果如下:

sql 复制代码
print(classification_report(y_test, y_predicted, target_names=['a类', 'b类', 'c类']))

如图左边显示出了新传入的标签名。

示例2:

sql 复制代码
from sklearn.metrics import classification_report
Y_test=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
Y_prediction=[0, 1, 0, 0, 0, 1, 1, 0, 0, 1]
print(classification_report(Y_test,Y_prediction))

输出结果:

得到该10个数据的二分类的分类报告:

先画个混淆矩阵:

给出了每类别对应的精度(Precision)、召回率(Recall)F1分数(F1-score)、真实中有多少个是该类别的(Support)、准确率(Accuracy)、宏平均(macro avg)和加权平均(weighted avg)。

Precision:预测为x的样本中,有多少被正确预测为x。

Precision_0=4/(2+4)=0.67

Precision_1=3/(3+1)=0.75

Recall:实际为x的类别中,有多少预测为x。

Recall_0=3/5=0.60

Recall_1=4/5=0.80

F1分数:2×Precision×Recall /(Precision+Recall)。

Accuracy:全部样本里被分类正确的比例。

Accuracy=7/10

macro avg:上面类别各分数的直接平均。

macro avg_precision=(0.67+0.75)/2=0.71

weighted avg:上面类别各分数的加权(权值为support)平均。

macro avg_precision=(0.675+0.755)/10=0.71

相关推荐
慎独41311 小时前
锚定智能化浪潮,其目科技以“硬核科技+数据闭环”重塑脑力教育新范式
大数据·人工智能
IT·小灰灰11 小时前
AI算力租赁完全指南(三):实战篇——GPU租用实操教程:从选型、避坑到跑通AI项目
人工智能·python·深度学习
bkspiderx11 小时前
Visual Studio 2026 新特性全解析(重点聚焦 AI 能力升级)
ide·人工智能·visual studio·vs2026·vs2026新特性全解析·vs2026重点聚焦ai
Francek Chen12 小时前
【自然语言处理】应用04:自然语言推断与数据集
人工智能·pytorch·深度学习·神经网络·自然语言处理
硬核创业者12 小时前
3个低门槛创业灵感
人工智能
冰西瓜60019 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术19 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技19 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路20 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟20 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署