python学opencv|读取图像(三)放大和缩小图像

【1】引言

前序已经学习了常规的图像读取操作和图像保存技巧,相关文章链接为:

python学opencv|读取图像-CSDN博客

python学opencv|读取图像(二)保存彩色图像-CSDN博客

今天我们更近一步,学习放大和缩小图像的技巧,力求掌握cv.resize()函数的用法。

【2】opencv官方教程

点击系下述链接,可以直达官网教程:

OpenCV: Geometric Image Transformations

在官网有很多函数,今天主要学习下述内容:

++图1++

其实这里讲的比较简单,综合起来就是:

resize(src, dst, dst.size(), fx, fy, interpolation)

src,输入图像,必须有,这是修改大小的初始条件;

dst,输出图像,如果不为0,大小和dsize一致,否则就,通过输入计算fx和fy;输出图像和输入图像的类型一致;

dsize,输出图像的大小,如果=0或者none,就用fx和fy来修改图像;

fx,水平方向放大因子;

fy,竖直方向放大因子;

interpolation,插值方法。

【3】代码测试

在上述基础上,输入以下代码做测试:

python 复制代码
import cv2 #引入CV模块

# 读取图片
image = cv2.imread('opencv-picture-001.png')

# 定义放大因子
scale_factor = 2

# 放大图片,使用立方插值
scaled_image = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值

# 保存结果
cv2.imwrite('scaled_image-22-INTER_CUBIC.png', scaled_image)

# 显示结果
cv2.imshow('Scaled Image', scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里,使用的原图像为opencv-picture-001.png:

++图2++

用了两倍的放大因子:scale_factor=2

使用的插值方法为:cv2.INTER_CUBIC

运行后的输出图像为:

++图3++

上传网站后好像图2和图3没有区别,我们看一下它们的大小:

++图4++

可见图3相对于图2确实是分别率扩大了两倍。

【4】插值方法测试

在上述测试案例上,我们获得的放大图像在上传CSDN网站后依然清晰。

实际上改变图像大小有多种插值方法,相关链接为:

OpenCV: Geometric Image Transformations

我们主要研究一下前面三种:

++图5++

更新插值和保存图像代码为:

复制代码
# 放大图片,使用不同插值方法
scaled_image = cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值
scaled_image1= cv2.resize(image, None, fx=0.2, fy=2.2, interpolation=cv2.INTER_NEAREST)
scaled_image2= cv2.resize(image, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR )
# 保存结果
cv2.imwrite('scaled_image-22-INTER_CUBIC.png', scaled_image)
cv2.imwrite('scaled_image-22-INTER_NEAREST.png', scaled_image1)
cv2.imwrite('scaled_image-22-INTER_LINEAR.png', scaled_image2)

获得的cv2.INTER_NEAREST和cv2.INTER_LINEAR插值图像为:

++图6++cv2.INTER_NEAREST

图6是使用NEAREST插值方法,横向缩小为原来的0.2倍,竖向扩大为原来的2.2倍后的效果。

++图7++ cv2.INTER_LINEAR

图7是使用 LINEAR插值方法,横向和竖向均缩小为原来的0.5倍后的图像。

之后我们继续修改,使图像的放大因子保持一致:

复制代码
scaled_image = cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值
scaled_image1= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_NEAREST)
scaled_image2= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR )
# 保存结果
cv2.imwrite('scaled_image-220-INTER_CUBIC.png', scaled_image)
cv2.imwrite('scaled_image-220-INTER_NEAREST.png', scaled_image1)
cv2.imwrite('scaled_image-220-INTER_LINEAR.png', scaled_image2)

此时获得的图像为:

图8 从上到下CUBIC-NEAREST-LINEAR

相对来说,CUBIC插值法获得的图像清晰度最好。

此时的完整代码为:

python 复制代码
import cv2 #引入CV模块

# 读取图片
image = cv2.imread('opencv-picture-001.png')

# 定义放大因子
scale_factor = 2

# 放大图片,使用不同插值方法
scaled_image = cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值
scaled_image1= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_NEAREST)
scaled_image2= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR )
# 保存结果
cv2.imwrite('scaled_image-220-INTER_CUBIC.png', scaled_image)
cv2.imwrite('scaled_image-220-INTER_NEAREST.png', scaled_image1)
cv2.imwrite('scaled_image-220-INTER_LINEAR.png', scaled_image2)
# 或者显示结果
cv2.imshow('Scaled Image', scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

【5】总结

探索了使用python+opencv放大和缩小图像的方法。

经过对比不同的插值方法,发现CUBIC插值法获得的图像清晰度最好。

相关推荐
oioihoii3 分钟前
深入理解 C++ 现代类型推导:从 auto 到 decltype 与完美转发
java·开发语言·c++
报错小能手7 分钟前
项目——基于C/S架构的预约系统平台 (1)
开发语言·c++·笔记·学习·架构
永霖光电_UVLED15 分钟前
FBH公司开发了200 MHz GaN降压变换器模块
人工智能·神经网络·生成对抗网络
说私域19 分钟前
流量转化与生态重构:“开源AI智能名片链动2+1模式S2B2C商城小程序”对直播电商的范式革新
人工智能·重构·开源
TextIn智能文档云平台21 分钟前
如何让AI更好地理解中文PDF中的复杂格式?
人工智能·pdf
小殊小殊22 分钟前
【论文笔记】LTX-Video极致速度的视频生成模型
图像处理·人工智能·深度学习
_AaRong_27 分钟前
《Hiding Images in Diffusion Models by Editing Learned Score Functions》 论文阅读
论文阅读·人工智能·计算机视觉
MYX_30929 分钟前
第四章 多层感知机
开发语言·python
盼哥PyAI实验室30 分钟前
《Python爬虫 + 飞书自动化上传》全流程详细讲解
爬虫·python·飞书